Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Mar Pollut Bull ; 208: 116941, 2024 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-39265308

RESUMEN

In recent years, the frequent occurrence of green tides has attracted attention from academia and industry. Despite some literature reviews, systematic bibliometric and visualization analyses are still lacking. The study employs CiteSpace and VOSviewer tools to conduct a bibliometric and visualization analysis of green tide-related literature from the Web of Science (1995 to 2023). The study identifies key countries, institutions, journals, disciplines, and authors, and maps out their collaborative networks. Co-citation analysis provides an initial overview of various aspects within the green tide field. Keyword analysis has reveals six core themes: remote sensing applications, eutrophication and green tides, phylogenetic analysis, the impact of climate change, green tide management and applications, and studies focused on green tides in the China Sea. Additionally, keyword burst analysis has revealed two emerging trends. This study provides a strategic framework for future research, serving as a navigational guide in the field of green tide studies.

2.
Mar Pollut Bull ; 201: 116233, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38457878

RESUMEN

Green tides, a globally prevalent marine ecological anomaly observed in coastal regions, have received substantial attention. However, there is limited research on the burial of Ulva prolifera in sediments during the late stages of green tide outbreaks. This study investigates the effect of temperature on U. prolifera buried in sediment over 30 days. The measurements included the length, biomass, relative growth rate, chlorophyll composition and maximum quantum yield (Fv/Fm) of PS II at different stages. The results indicate that at -20 °C, numerous seedlings emerged after 14 days of recovery culture, suggesting the release of spores or gametes; survival was possible from -2 °C to 15 °C; but at 20 °C and 30 °C, all U. prolifera died. The U. prolifera buried in sediment during the late stage of green tide outbreaks may serve as one of the sources for the subsequent year's green tide eruption. This research provides insights into the origins of green tide outbreaks in the southern Yellow Sea.


Asunto(s)
Algas Comestibles , Eutrofización , Ulva , Temperatura , Biomasa , China
3.
Harmful Algae ; 133: 102588, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-38485443

RESUMEN

To investigate the detrimental impacts of cyanobacterial bloom, specifically Microcystis aeruginosa, on brackish water ecosystems, the study used Moina mongolica, a cladoceran species, as the test organism. In a chronic toxicology experiment, the survival and reproductive rates of M. mongolica were assessed under M. aeruginosa stress. It was observed that the survival rate of M. mongolica fed with M. aeruginosa significantly decreased with time and their reproduction rate dropped to zero, while the control group remained maintained stable and normal reproduction. To further explore the underlying molecular mechanisms of the effects of M. aeruginosa on M. mongolica, we conducted a transcriptomic analysis on newly hatched M. mongolica cultured under different food conditions for 24 h. The results revealed significant expression differences in 572 genes, with 233 genes significantly up-regulated and 339 genes significantly down-regulated. Functional analysis of these differentially expressed genes identified six categories of physiological functional changes, including nutrition and metabolism, oxidative phosphorylation, neuroimmunology, cuticle and molting, reproduction, and programmed cell death. Based on these findings, we outlined the basic mechanisms of microcystin toxicity. The discovery provides critical insights into the mechanisms of Microcystis toxicity on organisms and explores the response mechanisms of cladocerans under the stress of Microcystis.


Asunto(s)
Cladóceros , Microcystis , Animales , Microcystis/fisiología , Ecosistema , Perfilación de la Expresión Génica , Aguas Salinas
4.
Mar Pollut Bull ; 199: 115944, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38142666

RESUMEN

Golden tide outbreak threatened the marine ecological environment. Sargassum horneri is a single dominant species of the Yellow Sea golden tide, which growth and development are affected by changes in sea water temperature. This study investigated the photosynthetic physiology of copper algae and found that the growth rate, chlorophyll a content, carotenoid content, Fv/Fm, and maximum electron transfer efficiency were significantly reduced, indicating that Sargassum horneri was under stress under high temperature. In this study, high-throughput sequencing was used to analyze the response mechanisms of photosynthesis-related genes in S. horneri under high temperature stress. The results showed that most of the photosynthesis-related genes in S. horneri were downregulated and photosynthesis was inhibited under high temperature stress. However, the expression levels of ferredoxin, ferredoxin-NADP reductase, light-harvesting protein complexes, and oxygen-evolving complex genes were significantly upregulated (P ≤ 0.05) after five days of high temperature treatment. This study found that photosynthesis related genes play a crucial role in regulating the photosynthetic response of S. horneri to high temperature stress.


Asunto(s)
Sargassum , Temperatura , Clorofila A , Fotosíntesis , Agua de Mar
5.
Environ Pollut ; 332: 121969, 2023 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-37301456

RESUMEN

Green tides have been reported to occur in many sea areas worldwide. In China, most of them are caused by Ulva spp., such as Ulva prolifera and Ulva meridionalis. Green tide algae shed are frequently the initial biomass for the formation of green tide. Human activities and seawater eutrophication are the fundamental causes of the formation of the green tides in the Bohai Sea, Yellow Sea, and South China Sea, but other environmental factors may also have an impact on the shedding of green tide algae, such as typhoons and currents. Algae shedding is divided into artificial shedding and natural shedding. However, few studies have explored the relationship between algal natural shedding and environmental factors. pH, sea surface temperature, and salinity are critical environmental factors affecting the physiological state of algae. Therefore, based on field observations of the shedding of attached green macroalgae in Binhai Harbor, this study assessed the correlation between the shedding rate and environmental factors (pH, sea surface temperature, and salinity). The green algae that shed from Binhai Harbor in August 2022 were all identified as U. meridionalis. The shedding rate range was 0.88% ± 0.11% d-1 to 4.78% ± 1.76% d-1, and was not correlated with pH, sea surface temperature, or salinity; however, the environmental conditions were very suitable for the proliferation of U. meridionalis. This study provided a reference for the shedding mechanism of green tide algae and revealed that with the frequent human activities along the coast, U. meridionalis may pose a new ecological risk in the Yellow Sea.


Asunto(s)
Chlorophyta , Algas Marinas , Ulva , Humanos , Ulva/fisiología , Agua de Mar , Eutrofización , China
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...