Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Environ Sci Technol ; 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38691809

RESUMEN

Although electro-Fenton (EF) processes can avoid the safety risks raised by concentrated hydrogen peroxide (H2O2), the Fe(III) reduction has always been either unstable or inefficient at high pH, resulting in catalyst deactivation and low selectivity of H2O2 activation for producing hydroxyl radicals (•OH). Herein, we provided a strategy to regulate the surface dipole moment of TiO2 by Fe anchoring (TiO2-Fe), which, in turn, substantially increased the H2O2 activation for •OH production. The TiO2-Fe catalyst could work at pH 4-10 and maintained considerable degradation efficiency for 10 cycles. Spectroscopic analysis and a theoretical study showed that the less polar Fe-O bond on TiO2-Fe could finely tune the polarity of H2O2 to alter its empty orbital distribution, contributing to better ciprofloxacin degradation activity within a broad pH range. We further verified the critical role of the weakened polarity of H2O2 on its homolysis into •OH by theoretically and experimentally investigating Cu-, Co-, Ni-, Mn-, and Mo-anchored TiO2. This concept offers an avenue for elaborate design of green, robust, and pH-universal cathodic Fenton-like catalysts and beyond.

2.
Adv Mater ; : e2405832, 2024 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-38759109

RESUMEN

A broad range of chemical transformations driven by catalytic processes necessitates the electron transfer between catalyst and substrate. The redox cycle limitation arising from the inequivalent electron donation and acceptance of the involved catalysts, however, generally leads to their deactivation, causing substantial economic losses and environmental risks. Here, a "non-redox catalysis" strategy is provided, wherein the catalytic units are constructed by atomic Fe and B as dual active sites to create tensile force and electric field, which allows directional self-decomposition of peroxymonosulfate (PMS) molecules through internal electron transfer to form singlet oxygen, bypassing the need of electron transfer between catalyst and PMS. The proposed catalytic approach with non-redox cycling of catalyst contributes to excellent stability of the active centers while the generated reactive oxygen species find high efficiency in long-term catalytic pollutant degradation and selective organic oxidation synthesis in aqueous phase. This work offers a new avenue for directional substrate conversion, which holds promise to advance the design of alternative catalytic pathways for sustainable energy conversion and valuable chemical production.

3.
Angew Chem Int Ed Engl ; 63(17): e202401551, 2024 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-38403815

RESUMEN

Singlet oxygen (1O2) is an exceptional reactive oxygen species in advanced oxidation processes for environmental remediation. Despite single-atom catalysts (SACs) representing the promising candidate for the selective generation of 1O2 from peroxymonosulfate (PMS), the necessity to meticulously regulate the coordination environment of metal centers poses a significant challenge in the precisely-controlled synthetic method. Another dilemma to SACs is their high surface free energy, which results in an inherent tendency for the surface migration and aggregation of metal atoms. We here for the first time reported that Ru nanoparticles (NPs) synthesized by the facile pyrolysis method behave as robust Fenton-like catalysts, outperforming Ru SACs, towards efficient activation of PMS to produce 1O2 with nearly 100 % selectivity, remarkably improving the degradation efficiency for target pollutants. Density functional theory calculations have unveiled that the boosted PMS activation can be attributed to two aspects: (i) enhanced adsorption of PMS molecules onto Ru NPs, and (ii) decreased energy barriers by offering adjacent sites for promoted dimerization of *O intermediates into adsorbed 1O2. This study deepens the current understanding of PMS chemistry, and sheds light on the design and optimization of Fenton-like catalysts.

4.
Redox Biol ; 68: 102939, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37890360

RESUMEN

Acute kidney injury (AKI) progression to chronic kidney disease (CKD) represents a unique renal disease setting characterized by early renal cellular injury and regulated cell death, and later renal fibrosis, of which the critical role and nature of ferroptosis are only partially understood. Here, we report that renal tubular epithelial ferroptosis caused by HDAC3 (histone deacetylase 3) aberration and the resultant GPX4 suppression drives AKI-CKD progression. In mouse models of AKI-CKD transition induced by nephrotoxic aristolochic acid (AA) and folic acid (FA), renal tubular epithelial ferroptosis occurred early that coincided with preferential HDAC3 elevation and marked suppression of a core anti-ferroptosis enzyme GPX4 (glutathione peroxidase 4). Intriguingly, genetic Hdac3 knockout or administration of a HDAC3-selective inhibitor RGFP966 effectively mitigated the GPX4 suppression, ferroptosis and the fibrosis-associated renal functional loss. In cultured tubular epithelial cells, HDAC3 over-expression or inhibition inversely affected GPX4 abundances. Further analysis revealed that Gpx4 promoter contains a typical binding motif of transcription factor KLF5 (Kruppel-like factor 5). HDAC3 and KLF5 inducibly associated and bound to Gpx4 promoter upon AA treatment, leading to local histone hypoacetylation and GPX4 transactivation inhibition, which was blocked by RGFP966 and a KLF5 inhibitor ML264, respectively, suggesting that KLF5 co-regulated the HDAC3-incurred Gpx4 transcription inhibition. More importantly, in AKI-CKD mice receiving a GPX4 inactivator RSL3, the anti-ferroptosis and renoprotective effects of RGFP966 were largely abrogated, indicating that GPX4 is an essential downstream mediator of the HDAC3 aberration and renal ferroptosis during AKI-CKD transition. Together, our study identified a critical epigenetic pathway of ferroptosis during AKI-CKD transition and suggested that the strategies preserving GPX4 by HDAC3 inhibition are potentially effective to reduce renal ferroptosis and slow AKI-CKD progression.


Asunto(s)
Lesión Renal Aguda , Ferroptosis , Insuficiencia Renal Crónica , Animales , Ratones , Lesión Renal Aguda/etiología , Ferroptosis/genética , Riñón/metabolismo , Insuficiencia Renal Crónica/complicaciones , Insuficiencia Renal Crónica/metabolismo , Progresión de la Enfermedad
5.
Nephrology (Carlton) ; 24(10): 1001-1008, 2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-30537427

RESUMEN

BACKGROUND: Klotho G-395-A gene polymorphism is associated with several diseases; however, its association with calcium-phosphate metabolism disorders in end-stage renal disease (ESRD) is unknown. METHODS: A total of 137 patients with ESRD and 80 healthy adults (control) were enrolled in the study. Patients with ESRD were divided into three subgroups: haemodialysis (A1, n = 52), peritoneal dialysis (A2, n = 30), and non-dialysis (A3, n = 55). The klotho G-395-A genotype was detected by TaqMan PCR assay, and ELISA was used to detect the soluble klotho protein (sKL) and fibroblast growth factor (FGF23). Intact parathyroid hormone (iPTH) and other related clinical biochemical parameters were also analyzed for all subjects. RESULTS: (i) Three genotypes (GG, GA and AA) of KL G-395A were detected, and a significant difference between the ESRD and control groups was observed, (ii) sKL was inversely associated with FGF23 in each subgroup and phosphate and positively associated with calcium in A1 and A3. FGF23 was positively associated with phosphate and inversely associated with calcium in each subgroup, (iii) a statistical difference in levels of sKL and FGF23 was observed between GG and AA, as well as between GA and AA. The expression of sKL was lowest and the level of FGF23 was highest in AA and (iv). GA + AA genotypes and FGF23 were risk factors and sKL might be protective factor of calcium-phosphate metabolism disorders. CONCLUSION: Soluble klotho protein and FGF23 were associated with the regulation of calcium and phosphate metabolism, and the A allele of the G-395A klotho gene polymorphism could be a risk factor on calcium-phosphate metabolism disorders in patients with ESRD.


Asunto(s)
Trastornos del Metabolismo del Calcio , Calcio/metabolismo , Factores de Crecimiento de Fibroblastos/sangre , Glucuronidasa/genética , Fallo Renal Crónico , Fosfatos/metabolismo , Trastornos del Metabolismo del Fósforo , Adulto , Trastornos del Metabolismo del Calcio/diagnóstico , Trastornos del Metabolismo del Calcio/genética , Femenino , Factor-23 de Crecimiento de Fibroblastos , Glucuronidasa/sangre , Humanos , Fallo Renal Crónico/genética , Fallo Renal Crónico/metabolismo , Fallo Renal Crónico/terapia , Proteínas Klotho , Masculino , Trastornos del Metabolismo del Fósforo/diagnóstico , Trastornos del Metabolismo del Fósforo/genética , Polimorfismo Genético , Terapia de Reemplazo Renal/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA