Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Angew Chem Int Ed Engl ; : e202407766, 2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38778504

RESUMEN

Inverted perovskite solar cells (PSCs) are preferred for tandem applications due to their superior compatibility with diverse bottom solar cells. However, the solution processing and low formation energy of perovskites inevitably lead to numerous defects at both the bulk and interfaces. We report a facile and effective strategy for precisely modulating the perovskite by incorporating AlOx deposited by atomic layer deposition (ALD) on the top interface. We find that Al3+ can not only infiltrate the bulk phase and interact with halide ions to suppress ion migration and phase separation but also regulate the arrangement of energy levels and passivate defects on the perovskite surface and grain boundaries. Additionally, ALD-AlOx exhibits an encapsulation effect through a dense interlayer. Consequently, the ALD-AlOx treatment can significantly improve the power conversion efficiency (PCE) to 21.80 % for 1.66 electron volt (eV) PSCs. A monolithic perovskite-silicon TSCs using AlOx-modified perovskite achieved a PCE of 28.5 % with excellent photothermal stability. More importantly, the resulting 1.55 eV PSC and module achieved a PCE of 25.08 % (0.04 cm2) and 21.01 % (aperture area of 15.5 cm2), respectively. Our study provides an effective way to efficient and stable wide-band gap perovskite for perovskite-silicon TSCs and paves the way for large-area inverted PSCs.

2.
Nanomicro Lett ; 16(1): 190, 2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38698298

RESUMEN

A considerable efficiency gap exists between large-area perovskite solar modules and small-area perovskite solar cells. The control of forming uniform and large-area film and perovskite crystallization is still the main obstacle restricting the efficiency of PSMs. In this work, we adopted a solid-liquid two-step film formation technique, which involved the evaporation of a lead iodide film and blade coating of an organic ammonium halide solution to prepare perovskite films. This method possesses the advantages of integrating vapor deposition and solution methods, which could apply to substrates with different roughness and avoid using toxic solvents to achieve a more uniform, large-area perovskite film. Furthermore, modification of the NiOx/perovskite buried interface and introduction of Urea additives were utilized to reduce interface recombination and regulate perovskite crystallization. As a result, a large-area perovskite film possessing larger grains, fewer pinholes, and reduced defects could be achieved. The inverted PSM with an active area of 61.56 cm2 (10 × 10 cm2 substrate) achieved a champion power conversion efficiency of 20.56% and significantly improved stability. This method suggests an innovative approach to resolving the uniformity issue associated with large-area film fabrication.

3.
J Am Chem Soc ; 146(11): 7555-7564, 2024 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-38456423

RESUMEN

Constructing low-dimensional/three-dimensional (LD/3D) perovskite solar cells can improve efficiency and stability. However, the design and selection of LD perovskite capping materials are incredibly scarce for inverted perovskite solar cells (PSCs) because LD perovskite capping layers often favor hole extraction and impede electron extraction. Here, we develop a facile and effective strategy to modify the perovskite surface by passivating the surface defects and modulating surface electrical properties by incorporating morpholine hydriodide (MORI) and thiomorpholine hydriodide (SMORI) on the perovskite surface. Compared with the PI treatment that we previously developed, the one-dimensional (1D) perovskite capping layer derived from PI is transformed into a two-dimensional (2D) perovskite capping layer (with MORI or SMORI), achieving dimension regulation. It is shown that the 2D SMORI perovskite capping layer induces more robust surface passivation and stronger n-N homotype 2D/3D heterojunctions, achieving a p-i-n inverted solar cell with an efficiency of 24.55%, which retains 87.6% of its initial efficiency after 1500 h of operation at the maximum power point (MPP). Furthermore, 5 × 5 cm2 perovskite mini-modules are presented, achieving an active-area efficiency of 22.28%. In addition, the quantum well structure in the 2D perovskite capping layer increases the moisture resistance, suppresses ion migration, and improves PSCs' structural and environmental stability.

4.
Adv Mater ; : e2307635, 2023 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-37714163

RESUMEN

Multiple cation-composited perovskites are demonstrated as a promising approach to improving the performance and stability of perovskite solar cells (PSCs). However, recipes developed for fabricating high-performance perovskites in laboratories are always not transferable in large-scale production, as perovskite crystallization is highly sensitive to processing conditions. Here, using an in situ optical method, the ambient temperature effect on the crystallization process in multiple cation-composited perovskites is investigated. It is found that the typical solvent-coordinated intermediate phase in methylammonium lead iodide (MAPbI3 ) is absent in formamidinium lead iodide (FAPbI3 ), and nucleation is almost completed in FAPbI3 right after spin-coating. Interestingly, it is found that there is noticeable nuclei aggregation in Formamidinium (FA)-based perovskites even during the spin-coating process, which is usually only observed during the annealing in MAPbI3 . Such aggregation is further promoted at a higher ambient temperature or in higher FA content. Instead of the general belief of stress release-induced crack formation, it is proposed that the origin of the cracks in FA-based perovskites is due to the aggregation-induced solute depletion effect. This work reveals the limiting factors for achieving high-quality FA-based perovskite films and helps to unlock the existing narrow processing window for future large-scale production.

5.
Adv Mater ; 35(46): e2304415, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37487572

RESUMEN

Self-assembled monolayers (SAMs) are widely employed as effective hole-selective layers (HSLs) in inverted perovskite solar cells (PSCs). However, most SAM molecules are amphiphilic in nature and tend to form micelles in the commonly used alcoholic processing solvents. This introduces an extra energetic barrier to disassemble the micelles during the binding of SAM molecules on the substrate surface, limiting the formation of a compact SAM. To alleviate this problem for achieving optimal SAM growth, a co-solvent strategy to disassemble the micelles of carbazole-based SAM molecules in the processing solution is developed. This effectively increases the critical micelle concentration to be above the processing concentration and enhances the reactivity of the phosphonic acid anchoring group to allow densely packed SAMs to be formed on indium tin oxide. Consequently, the PSCs derived from using MeO-2PACz, 2PACz, and CbzNaph SAM HSLs show universally improved performance, with the CbzNaph SAM-derived device achieving a champion efficiency of 24.98% and improved stability.

6.
Adv Mater ; 35(39): e2303665, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37459560

RESUMEN

The buried interface in perovskite solar cells (PSCs) is pivotal for achieving high efficiency and stability. However, it is challenging to study and optimize the buried interface due to its non-exposed feature. Here, a facile and effective strategy is developed to modify the SnO2 /perovskite buried interface by passivating the buried defects in perovskite and modulating carrier dynamics via incorporating formamidine oxalate (FOA) in SnO2 nanoparticles. Both formamidinium and oxalate ions show a longitudinal gradient distribution in the SnO2 layer, mainly accumulating at the SnO2 /perovskite buried interface, which enables high-quality upper perovskite films, minimized defects, superior interface contacts, and matched energy levels between perovskite and SnO2 . Significantly, FOA can simultaneously reduce the oxygen vacancies and tin interstitial defects on the SnO2 surface and the FA+ /Pb2+ associated defects at the perovskite buried interface. Consequently, the FOA treatment significantly improves the efficiency of the PSCs from 22.40% to 25.05% and their storage- and photo-stability. This method provides an effective target therapy of buried interface in PSCs to achieve very high efficiency and stability.

7.
J Am Chem Soc ; 145(10): 5920-5929, 2023 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-36877962

RESUMEN

Functional additives that can interact with the perovskite precursors to form the intermediate phase have been proven essential in obtaining uniform and stable α-FAPbI3 films. Among them, Cl-based volatile additives are the most prevalent in the literature. However, their exact role is still unclear, especially in inverted perovskite solar cells (PSCs). In this work, we have systematically studied the functions of Cl-based volatile additives and MA-based additives in formamidinium lead iodide (FAPbI3)-based inverted PSCs. Using in situ photoluminescence, we provide clear evidence to unravel the different roles of volatile additives (NH4Cl, FACl, and MACl) and MA-based additives (MACl, MABr, and MAI) in the nucleation, crystallization, and phase transition of FAPbI3. Three different kinds of crystallization routes are proposed based on the above additives. The non-MA volatile additives (NH4Cl and FACl) were found to promote crystallization and lower the phase-transition temperatures. The MA-based additives could quickly induce MA-rich nuclei to form pure α-phase FAPbI3 and dramatically reduce phase-transition temperatures. Furthermore, volatile MACl provides a unique effect on promoting the growth of secondary crystallization during annealing. The optimized solar cells with MACl can achieve an efficiency of 23.1%, which is the highest in inverted FAPbI3-based PSCs.

8.
Nanoscale ; 15(11): 5265-5273, 2023 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-36804644

RESUMEN

Stable lead-free hybrid halide double perovskites have sparked widespread interest as a new kind of photoelectric material. Herein, for the first time, we successfully incorporated copper(I) and antimony(III) into two two-dimensional (2D) hybrid bimetallic double perovskite iodides, namely (NH3C6H11)4CuSbI8·H2O (CuSbI-1) and (NH3C6H10NH3)2CuSbI8·0.5H2O (CuSbI-2), using cyclohexylamine and 1,4-cyclohexanediamine as organic components. The band gaps for CuSbI-1 and CuSbI-2 were determined to be 2.22(2) eV and 2.21(2) eV, respectively. Furthermore, these two layered perovskites were readily dissolved in an organic solvent (1 mL DMF can dissolve 1 g sample for each compound) and could form smooth, pinhole-free, and uniform thin films through a facile spin-coating method. Photocurrent experiments with xenon lamp irradiation revealed the obvious photoelectric responses for both 2D double perovskites. The ratio of the photocurrent to the dark current (Ilight/Idark) for CuSbI-1 and CuSbI-2 is about 23 and 10, respectively, further suggesting their potential to be applied as light harvesters or light detectors. More importantly, these 2D double perovskite iodides show high moisture and thermal stabilities, indicating their potential for optoelectronic applications.

9.
ChemSusChem ; 13(10): 2753-2760, 2020 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-32115873

RESUMEN

Bismuth organometal halide perovskites have recently been investigated as potential substitutes for lead perovskite solar-cell absorbers because of their lower toxicity. However, the narrowing of the band gap remains a crucial challenge for their practical application. All known Bi-based perovskites have large band gaps, thereby affording weak visible-light absorption. This study concerns a novel, lead-free, pseudo-3 D perovskite optoelectronic material, (MV)BiI5 (MV2+ =methyl viologen). The pseudo-3 D metal-halogen perovskite-like structure is constructed by connecting [BiI5 ] 2+ units via I⋅⋅⋅I contacts. MV, as a rigid organic amine, is located at the center of each parallelepiped to balance the charge and stabilize the structure. (MV)BiI5 has a narrow band gap of 1.48 eV and a better photoresponse than (MV)BiCl5 with a 1 D structure. (MV)BiI5 is the first Bi-based perovskite compound with a band gap energy comparable with (CH3 NH3 )PbI3 , which is encouraging for optoelectronic applications. This research will open a potential pathway for the design of pseudo-3 D Bi-based perovskites with performances comparable with APbX3 absorbers.

10.
Inorg Chem ; 58(10): 6601-6608, 2019 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-31038933

RESUMEN

Materials that demonstrate near-infrared (NIR) absorption and can simultaneously convert the electromagnetic irradiation into heat are promising for photothermal therapy. Traditionally, such a material is either pure inorganic, such as CuS, Ag2S, and carbon nanotube, or pure organic, such as polyaniline, polypyrrole, and conjugated polymers. Here we show that strong NIR photothermal effect can also be achieved in inorganic-organic hybrid coordination polymers (CPs) or metal-organic frameworks (MOFs). Our strategy is to construct CPs with inorganic Ag-S components that are interlinked by the organic ligands into a higher-dimensional hybrid network. Interestingly, the two resulting CPs, [Ag(Py-4-CSS)] n 1 and [Ag2(Py-4-CSS)(Py-4-CSSS)] n 2 (Py-4-CSS = pyridine-4-dithiocarboxylate; Py-4-CSSS = pyridine-4-perthiocarboxylate), show disparate structures due to the varied coordination mode of the pyridine group. For 1, the N atom coordinates to the Ag+ center and forms a two-dimensional square framework, while for 2, such a Ag-N bond is disconnected and forms only a one-dimensional structure. Interestingly, this difference leads to the distinct absorption properties in the NIR region. Under 800 nm radiation, the temperature of 1 can rise up to 24.5 °C in 3 min with photothermal conversion efficiency of 22.1%, which is about 2× that of pure inorganic Ag2S material and among the highest compared to various known inorganic materials, for example, Au nanoshells (13%), nanorods (21%), and Cu2- xSe nanocrystals (22%) irradiated with 800 nm light, while for 2, the NIR absorption is absent. This result first demonstrates that the inorganic-organic hybrid approach can be applied to construct superior NIR photothermal materials, but the control of the structure is vital. Here the coordinating nitrogen atoms in 1 are conceived to be critical in promoting the charge transfer between the dithiocarboxylate ligands. To elucidate the response to NIR irradiation of 1, we measured the heat capacity and dielectric constant of 1 and also performed density functional theory calculations. Significantly, the large dielectric constant and flat energy bands indicates 1 is much easier to be polarized and has a high electron effective mass. Thus, unlike the pure inorganic material, such as Ag2S, in which electron and hole can quantum mechanically combine to give off light, the joint-force of organic ligands in 1 effectively enhances polaronic recombination into heat.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...