Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 280
Filtrar
1.
J Pharm Pharmacol ; 2024 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-39137155

RESUMEN

OBJECTIVE: This study aimed to investigate the protective effect of bone marrow mesenchymal stem cell-derived exosomes (BMSCs-exo) against lower limb ischemia/reperfusion (I/R) injury-induced pyroptosis in skeletal muscle. METHODS: A mouse model of lower limb I/R injury was utilized to assess the impact of BMSCs-exo, particularly when loaded with microRNA-367-3p (miR-367-3p), on pyroptosis. Histological examination, wet weight/dry weight ratio measurements, and luciferase assays were employed to elucidate the mechanisms involved. KEY FINDINGS: BMSCs-exo effectively suppressed pyroptosis in injured skeletal muscle tissue. Loading BMSCs-exo with miR-367-3p enhanced this protective effect by downregulating key pyroptosis-related proteins. Luciferase assays identified enhancer of zeste homolog 2 (EZH2) as a direct target of miR-367-3p in BMSCs-exo. CONCLUSIONS: BMSCs-exo loaded with miR-367-3p safeguarded mouse skeletal muscle against pyroptosis-induced I/R injury by targeting EZH2. These findings offer valuable insights into potential therapeutic strategies for lower limb I/R injuries, emphasizing the therapeutic potential of BMSCs-exo in mitigating tissue damage caused by pyroptosis.

2.
Small ; : e2404142, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-39148197

RESUMEN

As of the present time, the in-depth study of the structure-activity relationship between electronic configuration and CO2 photoreduction performance is often overlooked. Herein, a series of Cux species modified CeO2 nanodots are constructed in situ by flame spray pyrolysis (FSP) to achieve an efficient photocatalytic CO2-to-C2 conversion with an electron utilization of up to 142.5 µmol g-1. Through an in-depth study of the electronic behavior and catalytic pathways, it is found that the Cu0/Cu+ species in the coexistence state of Cu0/Cu+/Cu2+ can optimize the energy band structure, photocurrent stability, and provide a kinetic basis for the active surface catalytic reaction process that requires the conversion of multiple electrons into C2 products, which ultimately enhances the CO2-to-C2H6 photoreduction by 3.8-fold and that for CO2-to-C2H4 photoreduction by 5.2-fold. Besides, the Cu2+ species in the coexistence state of Cu0/Cu+/Cu2+ are able to regulate the electronic behavior and the choice of the catalytic pathway, enabling the transitions between CO2-to-C2H6 and CO2-to-C2H4. This work indicates that electronic configuration optimization is an effective strategy to significantly enhance the CO2 photoreduction performance and provides new ideas for the design and synthesis of high-performance heterostructure photocatalysts.

3.
Spectrochim Acta A Mol Biomol Spectrosc ; 323: 124904, 2024 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-39094270

RESUMEN

It is very important and highly valuable to detect ClO- in samples and living cells with accuracy and speed. In this work, a novel fluorescent probe NA was prepared from 4-bromo-1,8-naphthalic anhydride by acylation reaction and Suzuki coupling reaction and used for the detection of ClO-. Thiomethyl serves as the recognition group for probe NA, while naphthalimide serves as fluorescent chromophore. The probe exhibited an extremely pronounced blue shift from yellow to blue fluorescence within 1 min after the addition of hypochlorite (ClO-). The probe demonstrates high sensitivity to ClO- with a limit of detection (LOD) of 1.22 µM. Also, probe NA demonstrates excellent selectivity and immunity to interference. Additionally, simple fluorescent test strips containing probe NA were prepared in this study, enabling rapid detection of ClO- in water samples. And NA had been effectively used to image endogenous and exogenous ClO-fluorescence in living cells. The results suggest that probe NA has significant potential for portable detection and biological applications.

5.
Front Med (Lausanne) ; 11: 1437849, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38975051

RESUMEN

Background: Observational studies have indicated that obesity is a risk factor for anorectal abscess (ARB). However, it remains unclear whether a causal genetic relationship exists between obesity and ARB. Methods: Univariate and multivariate Mendelian randomization (MR) were conducted using data from a large, published genome-wide association study (GWAS) of European ancestry to infer a causal relationship between obesity and ARB. Inverse variance weighted (IVW) analysis served as the primary analysis method, with results reported as odds ratios (OR). Results: MR analysis revealed that body mass index (BMI) positively affects ARB (OR 1.974, 95% confidence interval (CI) 1.548-2.519, p = 4.34 × 10-8). The weighted median method (OR = 1.879, 95% CI 1.248-2.829, p = 0.002) and Bayesian model averaging (BMA) (OR = 1.88, 95% CI 1.477-2.392, p = 2.85 × 10-7) also demonstrated consistent results. Subsequently, the impact of several obesity-related characteristics on ARB was assessed. Body fat percentage (BF), whole body fat mass (FM), waist circumference (WC), and hip circumference (HC) were found to be causally associated with an increased risk of ARB. However, these associations vanished after adjusting for BMI effects. Conclusion: The study confirms a positive causal effect of obesity on ARB, highlighting that reasonable weight control is an important strategy to reduce the incidence of ARB.

6.
Microbiol Resour Announc ; 13(8): e0036024, 2024 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-38975956

RESUMEN

Here, we report a draft genome sequence of endophytic fungus Nemania diffusa YAFEF818, isolated from Artemisia argyi. Oxford Nanopore Technologies PromethION and Illumina NovaSeq sequence reads were assembled using NECAT and polished using pilon to yield a 55.63 Mb genome.

7.
Sci Rep ; 14(1): 15956, 2024 07 10.
Artículo en Inglés | MEDLINE | ID: mdl-38987349

RESUMEN

With global warming, heat stress has become an important factor that seriously affects crop yield and quality. Therefore, understanding plant responses to heat stress is important for agricultural practice, but the molecular mechanism of high-temperature tolerance in garlic remains unclear. In this study, 'Xusuan No. 6' was used as the experimental material. After heat stress for 0 (CK), 2 and 24 h, transcriptome sequencing was used to screen metabolic pathways and differentially expressed genes (DEGs) closely related to heat stress and was further verified by quantitative real-time polymerase chain reaction (qRT-PCR). A total of 86,110 unigenes obtained from the raw transcriptome sequencing data were spliced. After 2 h of heat treatment, the expression levels of 8898 genes increased, and 3829 genes were decreased in leaves. After 24 h, the expression levels of 7167 genes were upregulated, and 3176 genes were downregulated. Gene Ontology enrichment analysis showed that DEGs were mainly enriched in seven categories: cellular processes, metabolic processes, binging, catalytic activity, cellular anatomical entity and protein-containing complex response to stimulus. Kyoto Encyclopedia of Genes and Genomes pathway enrichment showed that DEGs are involved in protein processing in the endoplasmic reticulum, plant hormone signal transduction, phenylpropanoid biosynthesis, and photosynthetic antenna proteins. Six genes were selected and further verified by qRT-PCR. In this study, the full-length transcriptome of garlic was constructed, and the regulatory genes related to the heat resistance of garlic were studied. Taken together, these findings can provide a theoretical basis for the cloning of heat resistance genes in garlic and for the analysis of heat resistance mechanisms.


Asunto(s)
Ajo , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Respuesta al Choque Térmico , Transcriptoma , Ajo/genética , Ajo/metabolismo , Respuesta al Choque Térmico/genética , Ontología de Genes , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
8.
Environ Int ; 190: 108806, 2024 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-38908272

RESUMEN

BACKGROUND: Emerging evidence has shown the potential involvement of phthalates (PAEs) exposure in the development of dementia with Lewy bodies (DLB). Metabolomics can reflect endogenous metabolites variation in the progress of disease after chemicals exposure. However, little is known about the association between PAEs, gut microbiota and metabolome in DLB. OBJECTIVE: We aim to explore the intricate relationship among urinary PAEs metabolites (mPAEs), dysbiosis of gut bacteria, and metabolite profiles in DLB. METHODS: A total of 43 DLB patients and 45 normal subjects were included in this study. Liquid chromatography was used to analyze the levels of mPAEs in the urine of the two populations. High-throughput sequencing and liquid chromatography-mass spectrometry were used to analyze gut microbiota and the profile of gut metabolome, respectively. The fecal microbiota transplantation (FMT) experiment was performed to verify the potential role of mPAEs on gut dysbiosis contribute to aggravating cognitive dysfunction in α-synuclein tg DLB/PD mice. RESULTS: The DLB patients had higher DEHP metabolites (MEOHP, MEHHP and MEHP), MMP and MnBP, lower MBP and MBzP than the control group and different microbiota. A significantly higher abundance of Ruminococcus gnavus and lower Prevotella copri, Prevotella stercorea and Bifidobacterium were observed in DLB. Higher 3 DEHP metabolites, MMP, MnBP and lower MBP and MBzP were significantly negatively associated with Prevotella copri, Prevotella stercorea and Bifidobacterium. Additionally, using metabolomics, we found that altered bile acids, short-chain fatty acids and amino acids metabolism are linked to these mPAEs. We further found that FMT of fecal microbiota from highest DEHP metabolites donors significantly impaired cognitive function in the germ-free DLB/PD mice. CONCLUSION: Our study suggested that PAEs exposure may alter the microbiota-gut-brain axis and providing novel insights into the interactions among environmental perturbations and microbiome-host in pathogenesis of DLB.

9.
Am J Case Rep ; 25: e943920, 2024 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-38881048

RESUMEN

BACKGROUND Flavonifractor plautii belongs to the clostridium family, which can lead to local infections as well as the bloodstream infections. Flavonifractor plautii caused infection is rarely few in the clinic. To understand better Flavonifractor plautii, we investigated the drug sensitivity and perform genome sequencing of Flavonifractor plautii isolated from blood samples in China and explored the drug resistance and pathogenic mechanism of the bacteria. CASE REPORT The Epsilometer test method was used to detect the sensitivity of flavonoid bacteria to antimicrobial agents. PacBio sequencing technology was employed to sequence the whole genome of Flavonifractor plautii, and gene prediction and functional annotation were also analyzed. Flavonifractor plautii displayed sensitivity to most drugs but resistance to fluoroquinolones and tetracycline, potentially mediated by tet (W/N/W). The total genome size of Flavonifractor plautii was 4,573,303 bp, and the GC content was 59.78%. Genome prediction identified 4,506 open reading frames, including 9 ribosomal RNAs and 66 transfer RNAs. It was detected that the main virulence factor-coding genes of the bacteria were the capsule, polar flagella and FbpABC, which may be associated with bacterial movement, adhesion, and biofilm formation. CONCLUSIONS The results of whole-genome sequencing could provide relevant information about the drug resistance mechanism and pathogenic mechanism of bacteria and offer a basis for clinical diagnosis and treatment.


Asunto(s)
Bacteriemia , Humanos , Bacteriemia/microbiología , Bacteriemia/tratamiento farmacológico , Genoma Bacteriano , Secuenciación Completa del Genoma , Antibacterianos/uso terapéutico , Masculino , Pruebas de Sensibilidad Microbiana , Flavobacteriaceae/genética , Flavobacteriaceae/aislamiento & purificación
10.
Nano Lett ; 24(26): 7992-7998, 2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38885645

RESUMEN

The development of advanced cathode materials able to promote the sluggish redox kinetics of polysulfides is crucial to bringing lithium-sulfur batteries to the market. Herein, two electrode materials: namely, Zr2PS2 and Zr2PTe2, are identified through screening several hundred thousand compositions in the Inorganic Crystal Structure Database. First-principles calculations are performed on these two materials. These structures are similar to that of the classical MXenes. Concurrently, calculations show that Zr2PS2 and Zr2PTe2 possess high electrical conductivity, promote Li ion diffusion, and have excellent electrocatalytic activity for the Li-S reaction and particularly for the Li2S decomposition. Besides, the mechanisms behind the excellent predicted performance of Zr2PS2 and Zr2PTe2 are elucidated through electron localization function, charge density difference, and localized orbital locator. This work not only identifies two candidate sulfur cathode additives but may also serve as a reference for the identification of additional electrode materials in new generations of batteries, particularly in sulfur cathodes.

11.
ACS Appl Mater Interfaces ; 16(27): 35639-35650, 2024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-38916253

RESUMEN

Photonic crystal coatings with unique structural colors and self-cleaning properties have been providing an efficient way for substrate coloration. However, the enhancement of the robustness and durability of structural colored coatings to meet the requirements in diverse environments remains a challenging task. Here, to realize the application of photonic crystal films under various kinds of conditions, we present a poly(fluoroalkyl acrylate)-based colloidal photonic crystal (fCPC) coating. Fluorinated core-interlayer-shell (FCIS) colloidal particles of polystyrene (PS) core, poly(methyl methacrylate) (PMMA) interlayer, and poly(fluoroalkyl acrylate-ethyl acrylate-butyl acrylate) (P(FA-EA-BA)) shell copolymers have been first prepared by a stepwise emulsion polymerization. fCPCs with self-supporting property, reprocessing ability, friction resistance, as well as excellent wettability and liquid-repellent properties are successfully obtained via the bending-induced ordering technique (BIOT). When applied in antifouling applications, the fCPC film exhibits resistance against various oil and inorganic liquids. Furthermore, the fCPC coatings demonstrate their durability under outdoor conditions by maintaining stable color appearances during rainy and sunny conditions. Additionally, an electronic product adhered with the fCPC coatings is presented, which exhibits a surface that remains clean even after prolonged usage in comparison to the conventional CPC coating. Structural colored textiles with enhanced stability and functionalized liquid-repellent properties are achieved through a one-step process using FCIS particles. Therefore, the developed self-cleaning and comprehensive fCPC coatings capable of withstanding diverse conditions may open up new avenues for the advancement of structural coloration in decoration, vehicle, textile, and building.

12.
BMC Cardiovasc Disord ; 24(1): 289, 2024 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-38822281

RESUMEN

LY86, also known as MD1, has been implicated in various pathophysiological processes including inflammation, obesity, insulin resistance, and immunoregulation. However, the role of LY86 in cholesterol metabolism remains incompletely understood. Several studies have reported significant up-regulation of LY86 mRNA in atherosclerosis; nevertheless, the regulatory mechanism by which LY86 is involved in this disease remains unclear. In this study, we aimed to investigate whether LY86 affects ox-LDL-induced lipid accumulation in macrophages. Firstly, we confirmed that LY86 is indeed involved in the process of atherosclerosis and found high expression levels of LY86 in human atherosclerotic plaque tissue. Furthermore, our findings suggest that LY86 may mediate intracellular lipid accumulation induced by ox-LDL through the SREBP2/HMGCR pathway. This mechanism could be associated with increased cholesterol synthesis resulting from enhanced endoplasmic reticulum stress response.


Asunto(s)
Aterosclerosis , Estrés del Retículo Endoplásmico , Hidroximetilglutaril-CoA Reductasas , Lipoproteínas LDL , Macrófagos , Transducción de Señal , Proteína 2 de Unión a Elementos Reguladores de Esteroles , Regulación hacia Arriba , Humanos , Lipoproteínas LDL/metabolismo , Proteína 2 de Unión a Elementos Reguladores de Esteroles/metabolismo , Proteína 2 de Unión a Elementos Reguladores de Esteroles/genética , Macrófagos/metabolismo , Macrófagos/efectos de los fármacos , Estrés del Retículo Endoplásmico/efectos de los fármacos , Aterosclerosis/metabolismo , Aterosclerosis/genética , Aterosclerosis/patología , Hidroximetilglutaril-CoA Reductasas/metabolismo , Hidroximetilglutaril-CoA Reductasas/genética , Placa Aterosclerótica , Células THP-1 , Masculino , Animales , Metabolismo de los Lípidos/efectos de los fármacos , Colesterol/metabolismo
13.
Sci Data ; 11(1): 540, 2024 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-38796485

RESUMEN

Amongst fishes, zebrafish (Danio rerio) has gained popularity as a model system over most other species and while their value as a model is well documented, their usefulness is limited in certain fields of research such as behavior. By embracing other, less conventional experimental organisms, opportunities arise to gain broader insights into evolution and development, as well as studying behavioral aspects not available in current popular model systems. The anabantoid paradise fish (Macropodus opercularis), an "air-breather" species has a highly complex behavioral repertoire and has been the subject of many ethological investigations but lacks genomic resources. Here we report the reference genome assembly of M. opercularis using long-read sequences at 150-fold coverage. The final assembly consisted of 483,077,705 base pairs (~483 Mb) on 152 contigs. Within the assembled genome we identified and annotated 20,157 protein coding genes and assigned ~90% of them to orthogroups.


Asunto(s)
Peces , Genoma , Animales , Peces/genética
14.
Oncol Lett ; 27(6): 245, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38638846

RESUMEN

[This corrects the article DOI: 10.3892/ol.2018.8364.].

15.
Acta Pharm Sin B ; 14(4): 1772-1786, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38572096

RESUMEN

Human monoamine oxidase B (hMAO-B) has emerged as a pivotal therapeutic target for Parkinson's disease. Due to adverse effects and shortage of commercial drugs, there is a need for novel, highly selective, and reversible hMAO-B inhibitors with good blood-brain barrier permeability. In this study, a high-throughput at-line nanofractionation screening platform was established with extracts from Chuanxiong Rhizoma, which resulted in the discovery of 75 active compounds, including phenolic acids, volatile oils, and phthalides, two of which were highly selective novel natural phthalide hMAO-B inhibitors that were potent, selective, reversible and had good blood‒brain permeability. Molecular docking and molecular dynamics simulations elucidated the inhibition mechanism. Sedanolide (IC50 = 103 nmol/L; SI = 645) and neocnidilide (IC50 = 131 nmol/L; SI = 207) demonstrated their excellent potential as hMAO-B inhibitors. They offset the limitations of deactivating enzymes associated with irreversible hMAO-B inhibitors such as rasagiline. In SH-SY5Y cell assays, sedanolide (EC50 = 0.962 µmol/L) and neocnidilide (EC50 = 1.161 µmol/L) exhibited significant neuroprotective effects, comparable to the positive drugs rasagiline (EC50 = 0.896 µmol/L) and safinamide (EC50 = 1.079 µmol/L). These findings underscore the potential of sedanolide as a novel natural hMAO-B inhibitor that warrants further development as a promising drug candidate.

16.
Transl Oncol ; 44: 101932, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38492500

RESUMEN

The genome of oral squamous cell carcinoma (OSCC) has been extensively characterized via bulk sequencing, revealing a multitude of genetic changes. The gene IGF2BP3, which encodes for the insulin-like growth factor 2 mRNA-binding protein 3, has been observed to be highly expressed in several types of cancer. This finding suggests that IGF2BP3 may play a significant role in the initiation and advancement of cancer. Nevertheless, the mechanisms by which IGF2BP3 contribute to OSCC are yet to be fully understood. In this study, we have observed that IGF2BP3 exhibits overexpression in OSCC. Based on our findings from bulk sequencing analysis, we have concluded that IGF2BP3 could potentially serve as a biomarker for predicting poor prognosis in OSCC. Moreover, it has been demonstrated that IGF2BP3 exhibits a significant association with the initiation and advancement of tumors both in vivo and in vitro. The evaluation of IGF2BP3 expression levels in relation to the cell cycle stage was conducted using single-cell RNA sequencing data. Tumor cells characterized by elevated IGF2BP3 expression demonstrated a higher percentage of cells in the G2/M transition phase. This study presents new findings indicating that the molecular target IGF2BP3 can serve as a prognostic indicator for tumors and has an impact on the development and progression of OSCC by influencing the regulation of the cell cycle.

17.
Adv Sci (Weinh) ; 11(24): e2308783, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38509587

RESUMEN

As the population ages, the worldwide prevalence of Alzheimer's disease (AD) as the most common dementia in the elderly is increasing dramatically. However, a long-term challenge is to achieve rapid and accurate early diagnosis of AD by detecting hallmarks such as amyloid beta (Aß42). Here, a multi-channel microfluidic-based plasmonic fiber-optic biosensing platform is established for simultaneous detection and differentiation of multiple AD biomarkers. The platform is based on a gold-coated, highly-tilted fiber Bragg grating (TFBG) and a custom-developed microfluidics. TFBG excites a high-density, narrow-cladding-mode spectral comb that overlaps with the broad absorption of surface plasmons for high-precision interrogation, enabling ultrasensitive monitoring of analytes. In situ detection and in-parallel discrimination of different forms of Aß42 in cerebrospinal fluid (CSF) are successfully demonstrated with a detection of limit in the range of ≈30-170 pg mL-1, which is one order of magnitude below the clinical cut-off level in AD onset, providing high detection sensitivity for early diagnosis of AD. The integration of the TFBG sensor with multi-channel microfluidics enables simultaneous detection of multiple biomarkers using sub-µL sample volumes, as well as combining initial binding rate and real-time response time to differentiate between multiple biomarkers in terms of binding kinetics. With the advantages of multi-parameter, low consumption, and highly sensitive detection, the sensor represents an urgently needed potentials for large-scale diagnosis of diseases at early stage.


Asunto(s)
Enfermedad de Alzheimer , Péptidos beta-Amiloides , Biomarcadores , Técnicas Biosensibles , Enfermedad de Alzheimer/diagnóstico , Enfermedad de Alzheimer/líquido cefalorraquídeo , Humanos , Biomarcadores/líquido cefalorraquídeo , Péptidos beta-Amiloides/líquido cefalorraquídeo , Técnicas Biosensibles/métodos , Técnicas Biosensibles/instrumentación , Microfluídica/métodos , Resonancia por Plasmón de Superficie/métodos , Resonancia por Plasmón de Superficie/instrumentación , Técnicas Analíticas Microfluídicas/métodos , Técnicas Analíticas Microfluídicas/instrumentación , Diagnóstico Precoz
18.
J Int Med Res ; 52(3): 3000605241236050, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38520253

RESUMEN

OBJECTIVE: Acute respiratory infections are a major global public health concern. However, there are few epidemiological studies investigating pathogens associated with respiratory tract infections in Guizhou Province, China. METHODS: We collected 17,850 blood samples from Guizhou Provincial People's Hospital between November 2018 and May 2023 to investigate the epidemiological characteristics of respiratory pathogens and their spread during the SARS-CoV-2 epidemic in Guizhou Province. RESULTS: We identified influenza virus and Mycoplasma pneumoniae as the predominant pathogens involved in acute respiratory infections in the study area. Immunoglobulin M positivity for respiratory syncytial virus, influenza virus, and M. pneumoniae showed a strong correlation with the clinical diagnosis of pneumonia. Seasonal epidemic patterns were observed for influenza A and B viruses. Following the SARS-CoV-2 outbreak, there was a significant decrease in the positive rates for most respiratory pathogens, particularly influenza A and B, Legionella pneumophila, and respiratory syncytial virus. CONCLUSION: This retrospective study contributes to the epidemiological evidence regarding respiratory pathogens in Guizhou Province, thereby enhancing the surveillance network for respiratory pathogens in China and providing valuable guidance for local hospitals.


Asunto(s)
COVID-19 , Gripe Humana , Infecciones del Sistema Respiratorio , Humanos , Gripe Humana/epidemiología , SARS-CoV-2 , Estudios Retrospectivos , COVID-19/epidemiología , COVID-19/complicaciones , Infecciones del Sistema Respiratorio/epidemiología , Infecciones del Sistema Respiratorio/diagnóstico , China/epidemiología , Mycoplasma pneumoniae
19.
J Med Microbiol ; 73(3)2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38506717

RESUMEN

Purpose. Metagenomic next-generation sequencing (mNGS) has been widely used in the diagnosis of infectious diseases, while its performance in diagnosis of tuberculous meningitis (TBM) is incompletely characterized. The aim of this study was to assess the performance of mNGS in the diagnosis of TBM, and illustrate the sensitivity and specificity of different methods.Methods. We retrospectively recruited TBM patients between January 2021 and March 2023 to evaluate the performance of mNGS on cerebrospinal fluid (CSF) samples, in comparison with conventional microbiological testing, including culturing of Mycobacterium tuberculosis (MTB), acid-fast bacillus (AFB) stain, reverse transcription PCR and Xpert MTB/RIF.Results. Of the 40 enrolled, 34 participants were diagnosed with TBM, including 15(44.12 %) definite and 19(55.88 %) clinical diagnosis based upon clinical manifestations, CSF parameters, brain imaging, pathogen evidence and treatment response. The mNGS method identified sequences of Mycobacterium tuberculosis complex (MTBC) in 11 CSF samples. In patients with definite TBM, the sensitivity, specificity, positive predictive value, negative predictive value and accuracy of mNGS were 78.57, 100, 100, 66.67 and 85 %, respectively. Compared to conventional diagnostic methods, the sensitivity of mNGS (78.57 %) was higher than AFB (0 %), culturing (0 %), RT-PCR (60 %) and Xpert MTB/RIF (14.29 %).Conclusions. Our study indicates that mNGS of CSF exhibited an overall improved sensitivity over conventional diagnostic methods for TBM and can be considered a front-line CSF test.


Asunto(s)
Mycobacterium tuberculosis , Tuberculosis Meníngea , Humanos , Tuberculosis Meníngea/diagnóstico , Estudios Retrospectivos , Secuenciación de Nucleótidos de Alto Rendimiento , Mycobacterium tuberculosis/genética , Encéfalo
20.
J Esthet Restor Dent ; 36(3): 437-444, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38303586

RESUMEN

OBJECTIVE: This study aimed to investigate the relationship between patient satisfaction of outcomes and tooth color changes during and after tooth bleaching. METHODS: In this clinical trial, 63 volunteers participated in an in-office bleaching procedure using a 40% hydrogen peroxide gel. The treatment consisted of two sessions, each comprising two 30-min applications of the bleaching gel. The L*, a*, and b* values of six maxillary anterior teeth were measured at baseline (T1), after the first bleaching session (T2), after the second bleaching session (T3), 1 week after the second in-office bleaching session (T4), and 3 weeks after the second in-office bleaching session (T5). The color differences (ΔE00 ) were calculated using CIEDE2000. A satisfaction scale with a score ranging from 0 to 3 was used to record participants' level of satisfaction with their tooth color at each time point. The data were statistically analyzed using repeated measures analysis of variance and logistic regression (α = 0.05). RESULTS: Significant correlations were observed between ΔL*, Δb*, and ΔE00 values at T3 and patient satisfaction (all p < 0.05). The regression model indicated a more pronounced impact of Δb* on patient satisfaction compared to ΔL*. The established regression models were as follows: Logit (PL*b* ) = -4.354 + 0.271ΔL* - 0.585Δb* and Logit (PΔE00 ) = -2.552 + 0.521ΔE00 . The findings suggested a minimum ΔE00 value of 4.90 for satisfactory results. A minimum ΔE00 value of 3.9, 5.0, and 6.8 was necessary for central incisors, lateral incisors, and canines, respectively, to achieve a satisfactory result. CONCLUSIONS: The ΔL*, Δb*, and ΔE00 values were found to be significantly correlated with patient satisfaction after bleaching. Δb* was identified as having a greater influence on patient satisfaction than ΔL* values in the regression model. Furthermore, attaining a minimum ΔE00 value of 4.90 is necessary to achieve satisfactory outcomes. A greater ΔE00 value is needed for canines than for incisors to achieve equivalent patient satisfaction. CLINICAL SIGNIFICANCE: This study emphasizes the importance of considering the extent of color change needed to achieve patient satisfaction after tooth bleaching procedures.


Asunto(s)
Blanqueadores Dentales , Blanqueamiento de Dientes , Diente , Humanos , Color , Peróxido de Hidrógeno , Incisivo , Satisfacción del Paciente , Blanqueamiento de Dientes/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...