Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Meat Sci ; 218: 109644, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-39241667

RESUMEN

Protein grass hay (PGH) was used as a new feed source for lambs to study its effect on fattening performance and meat quality. Fifty-six male lambs were allotted to four experimental groups and fed for eight weeks either alfalfa hay (AH)-based diet (control) or diets in which AH was replaced with 33 %, 66 %, or 99 % PGH. The inclusion of PGH did not affect final body weight, dry matter intake, average daily gain, feed conversion ratio, or carcass weight. Moreover, substituting AH with PGH at any level did not influence the ruminal fermentation or serum biochemical parameters, meat color, water holding capacity, shear force, or amino acid profile. However, relative liver weight was increased with 66 % substitutions. Furthermore, replacing 99 % AH with PGH decreased the meat's pH at 24 h. Higher levels of C18:3n-3, C20:5n-3, and total n-3 PUFA and a lower ratio of n-6: n-3 PUFA were also observed in meat from lambs fed PGH at 99 %. These findings suggest that PGH could be incorporated into the lamb's diet up to 99 % without compromising fattening performance and body health while improving their meat n-3 PUFA deposition.


Asunto(s)
Alimentación Animal , Dieta , Poaceae , Carne Roja , Oveja Doméstica , Animales , Masculino , Alimentación Animal/análisis , Dieta/veterinaria , Carne Roja/análisis , Proteínas en la Dieta/análisis , Fenómenos Fisiológicos Nutricionales de los Animales , Rumen/metabolismo , Medicago sativa , Concentración de Iones de Hidrógeno , Ácidos Grasos Omega-3/análisis , Hígado/metabolismo , Hígado/química , Aminoácidos/análisis , Fermentación , Color , Músculo Esquelético/química
2.
Microbiome ; 12(1): 131, 2024 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-39030599

RESUMEN

BACKGROUND: The average daily gain (ADG) of preweaning calves significantly influences their adult productivity and reproductive performance. Gastrointestinal microbes are known to exert an impact on host phenotypes, including ADG. The aim of this study was to investigate the mechanisms by which gastrointestinal microbiome regulate ADG in preweaning calves and to further validate them by isolating ADG-associated rumen microbes in vitro. RESULTS: Sixteen Holstein heifer calves were selected from a cohort with 106 calves and divided into higher ADG (HADG; n = 8) and lower ADG (LADG; n = 8) groups. On the day of weaning, samples of rumen contents, hindgut contents, and plasma were collected for rumen metagenomics, rumen metabolomics, hindgut metagenomics, hindgut metabolomics, and plasma metabolomics analyses. Subsequently, rumen contents of preweaning Holstein heifer calves from the same dairy farm were collected to isolate ADG-associated rumen microbes. The results showed that the rumen microbes, including Pyramidobacter sp. C12-8, Pyramidobacter sp. CG50-2, Pyramidobacter porci, unclassified_g_Pyramidobacter, Pyramidobacter piscolens, and Acidaminococcus fermentans, were enriched in the rumen of HADG calves (LDA > 2, P < 0.05). Enrichment of these microbes in HADG calves' rumen promoted carbohydrate degradation and volatile fatty acid production, increasing proportion of butyrate in the rumen and ultimately contributing to higher preweaning ADG in calves (P < 0.05). The presence of active carbohydrate degradation in the rumen was further suggested by the negative correlation of the rumen microbes P. piscolens, P. sp. C12-8 and unclassified_g_Pyramidobacter with the rumen metabolites D-fructose (R < - 0.50, P < 0.05). Widespread positive correlations were observed between rumen microbes (such as P. piscolens, P. porci, and A. fermentans) and beneficial plasma metabolites (such as 1-pyrroline-5-carboxylic acid and 4-fluoro-L-phenylalanine), which were subsequently positively associated with the growth rate of HADG calves (R > 0.50, P < 0.05). We succeeded in isolating a strain of A. fermentans from the rumen contents of preweaning calves and named it Acidaminococcus fermentans P41. The in vitro cultivation revealed its capability to produce butyrate. In vitro fermentation experiments demonstrated that the addition of A. fermentans P41 significantly increased the proportion of butyrate in the rumen fluid (P < 0.05). These results further validated our findings. The relative abundance of Bifidobacterium pseudolongum in the hindgut of HADG calves was negatively correlated with hindgut 4-hydroxyglucobrassicin levels, which were positively correlated with plasma 4-hydroxyglucobrassicin levels, and plasma 4-hydroxyglucobrassicin levels were positively correlated with ADG (P < 0.05). CONCLUSIONS: This study's findings unveil that rumen and hindgut microbes play distinctive roles in regulating the preweaning ADG of Holstein heifer calves. Additionally, the successful isolation of A. fermentans P41 not only validated our findings but also provided a valuable strain resource for modulating rumen microbes in preweaning calves. Video Abstract.


Asunto(s)
Microbioma Gastrointestinal , Rumen , Destete , Animales , Bovinos , Rumen/microbiología , Rumen/metabolismo , Bacterias/clasificación , Bacterias/aislamiento & purificación , Bacterias/metabolismo , Bacterias/genética , Femenino , Fermentación , Metagenómica/métodos , Metabolómica , Ácidos Grasos Volátiles/metabolismo , Ácidos Grasos Volátiles/análisis , Aumento de Peso , Butiratos/metabolismo
3.
Microbiome ; 12(1): 14, 2024 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-38254181

RESUMEN

BACKGROUND: The gut microbiome of domestic animals carries antibiotic resistance genes (ARGs) which can be transmitted to the environment and humans, resulting in challenges of antibiotic resistance. Although it has been reported that the rumen microbiome of ruminants may be a reservoir of ARGs, the factors affecting the temporal dynamics of the rumen resistome are still unclear. Here, we collected rumen content samples of goats at 1, 7, 14, 28, 42, 56, 70, and 84 days of age, analyzed their microbiome and resistome profiles using metagenomics, and assessed the temporal dynamics of the rumen resistome in goats at the early stage of life under a conventional feeding system. RESULTS: In our results, the rumen resistome of goat kids contained ARGs to 41 classes, and the richness of ARGs decreased with age. Four antibiotic compound types of ARGs, including drugs, biocides, metals, and multi-compounds, were found during milk feeding, while only drug types of ARGs were observed after supplementation with starter feed. The specific ARGs for each age and their temporal dynamics were characterized, and the network inference model revealed that the interactions among ARGs were related to age. A strong correlation between the profiles of rumen resistome and microbiome was found using Procrustes analysis. Ruminal Escherichia coli within Proteobacteria phylum was the main carrier of ARGs in goats consuming colostrum, while Prevotella ruminicola and Fibrobacter succinogenes associated with cellulose degradation were the carriers of ARGs after starter supplementation. Milk consumption was likely a source of rumen ARGs, and the changes in the rumen resistome with age were correlated with the microbiome modulation by starter supplementation. CONCLUSIONS: Our data revealed that the temporal dynamics of the rumen resistome are associated with the microbiome, and the reservoir of ARGs in the rumen during early life is likely related to age and diet. It may be a feasible strategy to reduce the rumen and its downstream dissemination of ARGs in ruminants through early-life dietary intervention. Video Abstract.


Asunto(s)
Microbioma Gastrointestinal , Microbiota , Animales , Humanos , Cabras , Rumen , Microbiota/genética , Animales Domésticos , Microbioma Gastrointestinal/genética , Antibacterianos/farmacología
4.
Microbiol Spectr ; 12(1): e0131423, 2024 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-38014976

RESUMEN

IMPORTANCE: Yaks, as ruminants inhabiting high-altitude environments, possess a distinct rumen microbiome and are resistant to extreme living conditions. This study investigated the microbiota, resistome, and functional gene profiles in the rumen of yaks fed milk or milk replacer (MR), providing insights into the regulation of the rumen microbiome and the intervention of antimicrobial resistance in yaks through dietary methods. The abundance of Prevotella members increased significantly in response to MR. Tetracycline resistance was the most predominant. The rumen of yaks contained multiple antimicrobial resistance genes (ARGs) originating from different bacteria, which could be driven by MR, and these ARGs displayed intricate and complex interactions. MR also induced changes in functional genes. The enzymes associated with fiber degradation and butyrate metabolism were activated and showed close correlations with Prevotella members and butyrate concentration. This study allows us to deeply understand the ruminal microbiome and ARGs of yaks and their relationship with rumen bacteria in response to different milk sources.


Asunto(s)
Microbiota , Leche , Animales , Bovinos , Antibacterianos/farmacología , Antibacterianos/metabolismo , Butiratos , Farmacorresistencia Bacteriana/genética , Microbiota/genética , Rumen/microbiología
5.
Front Microbiol ; 14: 1228935, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37928689

RESUMEN

Introduction: The mutton quality of Chinese Tan lambs (Ovis aries) has declined as feeding patterns have shifted from pasturing to pen rationing. While pen-fed can enhance the growth performance of sheep, it falls short in terms of meat quality attributes such as meat color and tenderness. Furthermore, compared to pen-fed, pasture-fed husbandry increases the proportion of oxidative muscle fibers, decreases the proportion of glycolytic muscle fibers, and reduces LDH (lactate dehydrogenase) activity. Mutton quality is affected by fatty acids, and rumen microorganisms play a role in the synthesis of short-chain fatty acids, long-chain fatty acids, and conjugated linoleic acids. Methods: We used 16S rRNA sequencing to analyze the effects of two feeding patterns on the rumen bacteria of Tan lambs. In a randomized block design with 24 newborn Tan lambs, 12 lambs were fed by ewes in pasture and 12 were fed by pen-fed ewes. At 2 months, the biceps femoris and the longissimus dorsi were analyzed by gas chromatography for intramuscular fat content and fatty acids composition, and DNA in the rumen contents was extracted and used to analyze the structure of the bacterial community. Results: Different feeding patterns had no significant effect on the intramuscular fat content of the biceps femoris and longissimus dorsi of the lambs, but there was a significant effect on fatty acids composition. The fatty acids c18:3n3 and c20:5n3 were significantly higher in the biceps femoris and longissimus dorsi of the pasture group than the pen-ration group. The alpha diversity of rumen bacteria was significantly greater in the pasture group compared to the pen-ration group. The ACE index, Chao1 index, Shannon index, and Simpson index were all notably higher in the pasture group than in the pen-ration group. Utilizing beta diversity analysis to examine the differences in rumen bacteria between the pasture group and pen-ration group, it was observed that the homogeneity of bacteria in the pasture group was lower than that in the pen-ration group. Furthermore, the diversity of rumen bacteria in the pasture group was greater than that in the pen-ration group. Twenty-one phyla were identified in the pasture group, and 14 phyla were identified in the pen-ration group. The dominant phyla in the pasture group were Bacteroidetes and Fibrobacteres; the dominant phyla in the pen-ration group were Proteobacteria and Bacteroidetes. The relative abundance of Proteobacteria was significantly higher in the pen-ration group than in the pasture group (p < 0.01). Diversity at the genus level was also higher in the pasture group, with 176 genera in the pasture group and 113 genera in the pen-ration group. The dominant genera in the pasture group were Prevotella_1, Rikenellaceae_RC9_gut_group, and Bacteroidales_BS11_gut_group_Na; the dominant genera in the pen-ration group were Prevotella_1, Prevotella_7, Succinivibrionaceae_UCG-001, and Succinivibrionaceae_NA. Discussion: The rumen bacterial community of Tan sheep is significantly influenced by pen-ration and pasture-fed conditions, leading to variations in fatty acid content in the muscle, which in turn affects the flavor and nutritional value of the meat to some extent. Pasture-fed conditions have been shown to enhance the diversity of rumen bacterial community structure in Tan sheep, thereby increasing the nutritional value of their meat.

6.
Antioxidants (Basel) ; 12(4)2023 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-37107254

RESUMEN

Under current breeding conditions, multiple stressors are important challenges facing animal husbandry in achieving animal wellbeing. For many years, the use of antibiotics has been a social concern in the livestock industry. With the implementation of the non-antibiotics policy, there is an urgent need to find relevant technologies and products to replace antibiotics and to solve the problem of disease prevention during animal growth. Phytogenic extracts have the unique advantages of being natural and extensive sources, having a low residue, and being pollution-free and renewable. They can relieve the various stresses, including oxidative stress, on animals and even control their inflammation by regulating the signaling pathways of proinflammatory cytokines, improving animal immunity, and improving the structure of microorganisms in the gastrointestinal tract, thereby becoming the priority choice for improving animal health. In this study, we reviewed the types of antioxidants commonly used in the livestock industry and their applicable effects on ruminants, as well as the recent research progress on their potential mechanisms of action. This review may provide a reference for further research and for the application of other phytogenic extracts and the elucidation of their precise mechanisms of action.

7.
Microorganisms ; 11(3)2023 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-36985149

RESUMEN

The health of young ruminants is highly dependent on early rumen microbial colonization. In this study, the effects of milk replacer on growth performance, rumen fermentation, and the rumen microflora in yak calves were evaluated. Sixty yak calves (body weight = 22.5 ± 0.95 kg, age = 30 ± 1 d) were assigned to the CON group (breastfed) or TRT group (milk replacer fed) and evaluated over 120 d. At 120 d, ruminal fluid samples were collected from 14 calves and then conducted for rumen fermentation and microbiota analyses. There was no difference in growth performance; however, calf survival was higher in the TRT group than in the CON group. The concentration of total volatile fatty acids and the molar proportion of butyric acid and lactic acid were increased with milk replacer feed in the TRT group (p < 0.05), but iso-valeric acid concentration was highest in the CON group (p < 0.05). Firmicutes and Bacteroidetes were the most dominant phyla in the CON and TRT groups, respectively. In the TRT group, Bacteroidetes, Prevotellaceae, Bacteroidia, Bacteroidetes, and Prevotella_1 were the dominant flora in the rumen of calves. The relative abundances of various taxa were correlated with rumen fermentation parameters; the relative abundance of Quinella and iso-butyrate levels were positively correlated (r = 0.57). The relative abundances of the Christensenellaceae_R-7_group and A/P were positively correlated (r = 0.57). In summary, milk replacer is conducive to the development of the rumen microflora, the establishment of rumen fermentation function, and the implementation of early weaning in yaks.

8.
Front Vet Sci ; 9: 851865, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35573396

RESUMEN

The study was conducted to evaluate the effects of Anemoside B4 on diarrhea incidence, serum indices, and fecal microbial of suckling calves. Sixty newborn Chinese Holstein calves with similar body weight (43.7 ± 3.9 kg) were randomly divided into four groups with 15 calves each, fed the diet which was supplied 0 (CON), 15 (A1), 30 (A2), and 45 (A3) mg/day of Anemoside B4, respectively. The trial period is 56 days. The blood and fecal samples were collected at 28 and 56 days of age. Results show that during the whole trial period, the diarrhea incidence in Group A1, A2, and A3 was significantly lower than that in Group CON (p < 0.05). Compared with the Group CON, Anemoside B4 supplementation significantly decreased the contents of serum D-lactic acid and diamine oxidase at 28-day-old (p < 0.05). At 56-day-old, the content of serum D-lactic acid in Group A3 tended to be higher (0.05 < p < 0.01), and the content of serum diamine oxidase in Group A3 increased significantly, in comparison with Group CON (p < 0.05). Group A3 increased the level of Chao1 and Simpson indices at 28-day-old (0.05 < p < 0.01), and Chao1, Observed_species, Shannon, and Simpson indices at 56-day-old (p < 0.05), in comparison to Group CON. Compared with Group CON, 45 mg / day Anemoside B4 supplementation significantly increased the contents of Bacteroidota (at the phylum level), Prevotella (at the genus level) at 28-day-old (p < 0.05), and the content of Sutterella (at the genus level) at 56-day-old (p < 0.05), promoted the processes of energy metabolism, glycan biosynthesis and metabolism, metabolism of cofactors and vitamins (p < 0.05). A positive correlation was observed between Prevotella and metabolism of cofactors and vitamins, energy metabolism, and glycan biosynthesis and metabolism. A positive correlation was observed between Sutterella and energy metabolism. In conclusion, Anemoside B4 could effectively alleviate calf diarrhea, protect the integrity of intestinal mucosa, and change the structure of intestinal microbiota, indicating the potential value of Anemoside B4 in regulating intestinal microbiota and the prevention of intestinal diseases.

9.
Antioxidants (Basel) ; 11(3)2022 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-35326192

RESUMEN

Weaning stress affects the health and performance of calves. L-glutamine (L-Gln) is commonly used as a functional antioxidant and energy supplement in the body. However, dietary L-Gln supplementation improving weaning stress of calves is unclear. Thus, we aimed to explore the effects of L-Gln (provided by rumen-protected L-Gln) on calves during weaning. Seventy-five Holstein calves (54.0 ± 2.68 kg; 42 ± 2.1 d of age) were assigned to five groups: no supplementation and L-Gln with 1%, 2%, 3%, and 4% dry matter daily intake (DMI) supplementation groups, respectively. The experiment lasted for 28 days (42-70 d of age of calves), and the calves were weaned at 15 d of experiment. DMI and body weekly weight of all calves were recorded. Blood samples of nine healthy calves with similar body weight were collected from each group at 0, 7, 14, 16, 18, 21, and 28 d of experiment for detecting serum L-Gln, glucose, insulin, urea nitrogen, D-lactate, cortisol, haptoglobin, interleukin-8, immunoglobulin (Ig) G, IgA, IgM, total antioxidant capacity, superoxide dismutase, glutathione peroxidase, catalase, and malondialdehyde. At the end of the experiment, six healthy calves with similar body weight from each group were selected for slaughter and morphological analysis of small intestine tissue. The results showed that the L-Gln supplementation in the diets improved the negative effects of sudden weaning in calves. Furthermore, compared to the higher-level L-Gln supple-mentation (3 and 4% of DMI) groups, the dietary lower-level L-Gln supplementation (1 and 2% of DMI) had higher average daily gain, glutathione peroxidase and IgG concentration, and villus height/crypt depth of the duodenum and jejunum, as well as lower cortisol, haptoglobin, and interleukin-8 concentration of weaned calves. These results provided effective reference for relieving the negative effects of calves during weaning.

10.
Antioxidants (Basel) ; 11(2)2022 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-35204153

RESUMEN

High-cost milk proteins necessitate cheaper, effective milk replacer alternatives, such as plant proteins. To examine plant protein-based milk replacer's impact on growth performance, serum immune and antioxidant indicators, and liver transcriptome profiles in suckling calves. We assigned 28 newborn Holstein calves (41.60 ± 3.67 kg of body weight at birth) to milk (M) or milk replacer (MR) and starter diets pre-weaning (0-70 d of age) but with the same starter diet post-weaning (71-98 d of age). During the pre-weaning period, compared with the M group, MR group had significantly lower body weight, withers height, heart girth, average daily gain, feed efficiency, serum immunoglobulin (Ig) M concentration, superoxide dismutase concentration, and total antioxidant capacity; whereas they had significantly higher serum aspartate aminotransferase concentration. During the post-weaning period, MR group presented significantly higher average daily gain, alanine transaminase, aspartate aminotransferase, and malonaldehyde concentrations; whereas they had significantly lower serum IgA and IgM concentrations than the M group. Transcriptome analysis revealed 1, 120 and 293 differentially expressed genes (DEGs; MR vs. M group) in the calves from pre- and post-weaning periods, respectively. The DEGs related to xenobiotic and lipid metabolism and those related to energy metabolism, immune function, and mineral metabolism were up- and downregulated, respectively, during the pre-weaning period; during the post-weaning period, the DEGs related to osteoclast differentiation and metabolic pathways showed difference. In this study, compared with M group, MR group had the same growth performance during the overall experimental period; however, MR affected the hepatic metabolism, immune, and antioxidant function of calves. These observations can facilitate future studies on milk replacers.

11.
Microorganisms ; 10(1)2022 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-35056593

RESUMEN

Weaning affects the development of ruminal bacteria in lambs during early life. However, the temporal dynamics of rumen microbiota in early weaned lambs is unknown compared to conventionally weaned lambs. In this study, one group was reared with their dams (control, CON) and conventionally weaned at 49 days (d), while the other lambs were weaned at 21 d (early weaning, EW) using starter. Rumen microbial samples collected at 26, 35, and 63 d were used for next-generation sequencing. Here, we found that the abundance and diversity of rumen microbiota in EW were significantly lower at 26 and 35 d than the CON. Linear discriminant analysis Effect Size (LEfSe) analysis was performed to identify the signature microbiota for EW at these three ages. At 26 d, Prevotella 7, Syntrophococcus, Sharpea, Dialister, Pseudoscardovia, and Megasphaera in the rumen of the EW group had greater relative abundances. At 35 d, the Lachnospiraceae_NK3A20_group was enriched in CON. On 63 d, Erysipelotrichaceae_UCG-002 was abundant in EW. Syntrophococcus and Megaspheaera in EW lambs were abundant at 26 and 35 d, but kept similar to CON at 63 d. The relative abundance of Erysipelotrichaceae_UCG-002 at all-time points was consistently higher in the EW group. In conclusion, early weaning led to a significant decrease in rumen microbiota richness and diversity in the short term. The changes in rumen microbiota are associated with the persistence of weaning stress. The temporal dynamics of relative abundances of Syntrophococcus, Megasphaera, and Ruminococcaceae_UCG-014 reflect the weaning stress over a short period and rumen recovery after early weaning.

12.
Anim Nutr ; 7(4): 1152-1161, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34754957

RESUMEN

The objective of this experiment was to evaluate the effect of supplementing rumen-protected Lys based on a Lys-deficient diet on liver metabolism in growing Holstein heifers. The experiment was conducted for 3 months with 36 Holstein heifers (initial body weight: 200 ± 9.0 kg; 7-month-old). Heifers were randomly assigned to 2 diets based on corn, soybean meal, alfalfa hay, and wheat bran: control, Lys-deficient diet (LD; 0.66% Lys in diet), and Lys-adequate diet (LA; 1.00% Lys in diet). The results showed no difference in growth performance between the 2 groups (P > 0.05). However, there was a clear trend of increasing feed conversion rate with Lys supplementation (0.05 < P < 0.01). The serum urea nitrogen concentration was significantly decreased, and the aspartate aminotransferase-to-alanine aminotransferase ratio was significantly decreased by Lys supplementation (P < 0.05). Moreover, growing heifers fed a Lys-adequate diet had lower levels of urine nitrogen excretion and higher levels of the biological value of nitrogen (P < 0.05). Metabolomic analysis revealed that 5 types of phosphatidylcholine and 3 types of ceramide were significantly increased and enriched in sphingolipid metabolism and glycerophospholipid metabolism (P < 0.05). His, Leu, and Asp levels were significantly decreased in the liver following Lys supplementation (P < 0.05). In conclusion, Lys supplementation may promote the synthesis of body tissue proteins, as evidenced by significantly decreased amino acids in the liver and urine N excretion, it also improves hepatic lipid metabolism by providing lipoprotein precursors.

13.
Animals (Basel) ; 11(3)2021 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-33801818

RESUMEN

The transition from monogastric to rumination stage is crucial in ruminants' growth to avoid stressors-weaning and neonatal mortalities. Poor growth of the digestive tract could adversely affect the performance of the animal. Modeling informative growth curves is of great importance for a better understanding of the effective development pattern, in order to optimize feeding management system, and to achieve more production efficiency. However, little is known about the digestive tract growth curves. For this reason, one big goat farm of Laiwu black breed was chosen as a basis of this study. Forty-eight kids belonging to eight-time points (1, 7, 14, 28, 42, 56, 70, and 84 d; 6 kids for each) were selected and slaughtered. The body weight, body size indices, rumen pH, and stomach parts were determined and fitted to the polynomial and sigmoidal models. In terms of goodness of fit criteria, the Gompertz model was the best model for body weight, body oblique length, tube, and rumen weight. Moreover, the Logistic model was the best model for carcass weight, body height, and chest circumference. In addition, the Quadratic model showed the best fit for dressing percentage, omasum weight, abomasum weight, and rumen volume. Moreover, the cubic model best fitted the ruminal pH and reticulum percentage. The Weibull model was the best model for the reticulum weight and omasum percentage, while the MMF model was the best model describing the growth of chest depth, rumen percentage, and abomasum percentage. The model parameters, R squared, inflection points, area under curve varied among the different dependent variables. The Pearson correlation showed that the digestive tract development was more correlated with age than body weight, but the other variables were more correlated with body weight than age. The study demonstrated the use of empirical sigmoidal and polynomial models to predict growth rates of the digestive tract at relevant age efficiently.

14.
Gut ; 70(5): 853-864, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33589511

RESUMEN

OBJECTIVE: Microbial exposure is critical to neonatal and infant development, growth and immunity. However, whether a microbiome is present in the fetal gut prior to birth remains debated. In this study, lambs delivered by aseptic hysterectomy at full term were used as an animal model to investigate the presence of a microbiome in the prenatal gut using a multiomics approach. DESIGN: Lambs were euthanised immediately after aseptic caesarean section and their cecal content and umbilical cord blood samples were aseptically acquired. Cecal content samples were assessed using metagenomic and metatranscriptomic sequencing to characterise any existing microbiome. Both sample types were analysed using metabolomics in order to detect microbial metabolites. RESULTS: We detected a low-diversity and low-biomass microbiome in the prenatal fetal gut, which was mainly composed of bacteria belonging to the phyla Proteobacteria, Actinobacteria and Firmicutes. Escherichia coli was the most abundant species in the prenatal fetal gut. We also detected multiple microbial metabolites including short chain fatty acids, deoxynojirimycin, mitomycin and tobramycin, further indicating the presence of metabolically active microbiota. Additionally, bacteriophage phiX174 and Orf virus, as well as antibiotic resistance genes, were detected in the fetal gut, suggesting that bacteriophage, viruses and bacteria carrying antibiotic resistance genes can be transmitted from the mother to the fetus during the gestation period. CONCLUSIONS: This study provides strong evidence that the prenatal gut harbours a microbiome and that microbial colonisation of the fetal gut commences in utero.


Asunto(s)
Feto/metabolismo , Feto/microbiología , Microbioma Gastrointestinal/genética , Ovinos/genética , Ovinos/microbiología , Animales , Femenino , Perfilación de la Expresión Génica , Metabolómica , Metagenómica , Modelos Animales , Embarazo
15.
Microorganisms ; 8(8)2020 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-32722119

RESUMEN

Early microbial colonization in the gut impacts animal performance and lifelong health. However, research on gut microbial colonization and development in young ruminants, especially after weaning, is currently limited. In this study, next-generation sequencing technology was performed to investigate the temporal dynamic changes of the microbial community in the jejunum and colon of goats at 1, 7, 14, 28, 42, 56, 70, and 84 days (d) of age. As age increased, significant increases in microbial diversity, including the number of Observed OTUs and the Shannon Index, were observed in both the jejunum and colon. Regarding beta diversity, significant shifts in community membership and structure from d1 to d84 were observed based on both Bray-Curtis and Jaccard distances. With increasing age, dominant genera in the jejunum shifted from Lactobacillus to unclassified Ruminococcaceae, unclassified Lachnospiraceae and unclassified Clostridiales through starter supplementation, whereas colonic dominant genera changed from Lactobacillus and Butyricicoccus, within d1-d28, to unclassified Ruminococcaceae, unclassified Clostridiales and Campylobacter after solid diet supplementation. The linear discriminant analysis (LDA) effect size (LEfSe) analysis revealed bacterial features that are stage-specific in the jejunum and colon, respectively. In the jejunum and colon, a significantly distinct structure and membership of the microbiota was observed across all ages. The growth stage-associated microbiota in each gut compartment was also identified as a marker for biogeography. Our data indicate the temporal and spatial differences of the gut microbiota in goats are important for their performance and health. Early microbial colonization can influence microbial composition in later life (e.g., post-weaning phase). This study provides insights that the temporal dynamics of gut microbiota development from newborn to post-weaning can aid in developing feeding strategies to improve goat health and production.

16.
Appl Microbiol Biotechnol ; 104(15): 6623-6634, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32519120

RESUMEN

This study aimed to evaluate the effects of partial reducing rumen-protected Lys (RPLys) on rumen fermentation and microbial composition in heifers. Three ruminal fistulated Holstein Friesian bulls were used to determine the effective degradability of RPLys using an in situ method at incubation times of 0, 2, 6, 12, 16, 24, 36, and 48 h. Thereafter, 36 Holstein heifers at 90 days of age were assigned to one of two dietary treatments: a theoretically balanced amino acid diet (PC group; 1.21% Lys, 0.4% Met) or a 30% Lys-reduced diet (PCLys group, 0.85% Lys, 0.4% Met). Rumen fluid samples from five heifers in each group were extracted using esophageal tubing on day 90 to determine pH, microprotein, ammonia, volatile fatty acids, and microbial communities. Results showed that the effective ruminal degradability was 25.76%. Furthermore, differences in rumen fermentation parameters and alpha diversity of the microbiota between the two groups were not significant, but beta diversity was significant. Based upon relative abundance analysis, short-chain fatty acid-producing bacteria, including Sharpea, Syntrophococcus, [Ruminococcus]_gauvreauii_group, Acetitomaculum, and [Eubacterium]_nadotum_group belonging to Firmicutes, were significantly decreased in the PCLys group. Spearman's analysis revealed a positive correlation between the butyrate molar proportion and the relative abundance of butyrate-producing bacteria such as [Eubacterium]_nadotum_group, Coprococcus_1, Ruminococcaceae_UCG_013, Pseudoramibacter, and Lachnospiraceae_UCG_010. Phylogenetic Investigation of Communities by Reconstruction of Unobserved States analysis further validated that RPLys deduction influenced energy metabolism. Together, our findings highlight the role of RPLys or Lys in butyrate-producing bacteria. However, the number of bacteria affected by Lys was very limited and insufficient to alter rumen fermentation. Key Points • Reducing 30% Lys via rumen-protected Lys did not affect rumen fermentation parameters and alpha diversity of microbiota of Holstein heifers. It meant that the ruminal fermentation pattern was not changed. • Reducing 30% Lys via rumen-protected lysine significantly decreased relative abundance of short-chain fatty acid-producing bacteria belonging to Firmicutes. • Functions of microorganisms were changed by reducing 30% Lys via rumen-protected Lys, especially amino acid metabolism. It may affect the amino acid composition of microprotein.


Asunto(s)
Alimentación Animal/análisis , Bacterias/metabolismo , Fermentación , Microbioma Gastrointestinal , Lisina/metabolismo , Rumen/química , Rumen/microbiología , Animales , Bacterias/clasificación , Bovinos , Suplementos Dietéticos/análisis , Metabolismo Energético , Femenino , Masculino
17.
Amino Acids ; 52(5): 781-792, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-32372391

RESUMEN

Lysine (Lys) is majorly metabolized in the liver. The liver functional consequences of a dietary Lys deficiency in young Holstein calves are unknown. This study aimed to investigate the effects of Lys deficiency in Holstein calf livers using RNA-sequencing and untargeted LC-MS metabolomics. Calves (n = 36; initial body weight 101.2 ± 10.8 kg; 90-day-old) were fed restricted diets, for 90 days, containing 19.2% crude protein that varied in Lys content (PC group 1.21%; PC-Lys group 0.85%; dry matter basis) for 90 days. Body weight, average daily gain, gain/feed, and Lys intake were significantly decreased in response to Lys deficiency (P < 0.05). Dry matter intake was not altered (P > 0.05). Network and pathway analyses revealed that noradrenaline, adenosine 5'-monophosphate, acetyl-CoA, and coenzyme A were significantly decreased. Regulating of lipolysis in adipocytes pathway and fatty acid degradation pathway were downregulated. We also identified eight significantly differentially expressed genes (SDEGs), among which adrenoceptor beta 2 (ADRB2), WAP four-disulfide core domain 2 (WFDC2), and claudin-4 (CLDN4) were associated with inhibition of lipolysis, and carbon catabolite repression 4-like (CCRN4L), FOS like 2 (FOSL2), and arginase 2 (ARG2) were associated with inhibiting lipid synthesis. Correlation tests showed that coenzyme A was strongly correlated with SDEGs (0.82 ≤|r|≤ 0.96). Acetyl-CoA and adenosine 5'-monophosphate were strongly correlated with CCRN4L (0.90 ≤|r|≤ 0.92), indicating a strong correlation between the changes in SDEGs and these metabolites. In conclusion, Lys deficiency caused dysplasia and affected lipid metabolism in the liver by inhibiting lipolysis and lipid synthesis in calves.


Asunto(s)
Alimentación Animal/análisis , Dieta/veterinaria , Hígado/metabolismo , Lisina/deficiencia , Metaboloma , Transcriptoma , Fenómenos Fisiológicos Nutricionales de los Animales , Animales , Animales Recién Nacidos , Bovinos , Cromatografía Liquida , Femenino , Espectrometría de Masas , RNA-Seq
18.
Animals (Basel) ; 9(10)2019 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-31635360

RESUMEN

Sixty neonatal Hu lambs were weaned at either 21 (n = 30) (early weaning, EW) or 49 days (n = 30) of age (control, CON). The starter intake and body weight (BW) of lambs was recorded weekly from birth to 63 days of age. Diarrhea rate of lambs was measured from birth to 35 days. Six randomly selected lambs from each treatment were slaughtered at 26, 35, and 63 days of age, respectively. Ruminal pH, NH3-N, and volatile fatty acid (VFA) concentration, as well as serum parameters including immunity, antioxidant status, and inflammatory parameters from randomly selected lambs from each treatment were measured. There was no difference in BW at birth and day 21 between the two groups of lambs (p > 0.05). However, BW of the lambs in the EW group was significantly lower than those in the CON group (p < 0.01) from 28 to 49 days of age. Average daily gain (ADG) of the lambs in the EW group was significantly lower than those in the CON group (p < 0.01) at three weeks after early weaning. Starter intake of the lambs in the EW group was obviously higher than that in the CON group (p < 0.01) from day 28 to 49. In addition, the diarrhea rate was significantly higher than that in the CON group from day 5 to 14 after weaning (p < 0.01). The EW group had heavier carcasses (p < 0.01) and rumen relative to whole stomach weights (p < 0.01). Rumen pH was increased by age (p < 0.01) and was not affected by early weaning (p > 0.05). Early weaning decreased abomasum relative to whole stomach weight (p < 0.01) and increased total VFA concentrations (p < 0.01) at day 26. There was no difference in lambs' immunity and stress indicators (p > 0.05). The results indicated that lambs weaned at 21 days of age had decreased ADG and higher diarrhea rate, although the overall immunity was not compromised. Long-term study is needed to further validate the feasibility of early weaning strategy in lambs.

19.
Animals (Basel) ; 9(10)2019 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-31574931

RESUMEN

An "Amino acid (AA) partial deletion method" was used in this experiment to study the limiting sequences and appropriate ratio of lysine (Lys), methionine (Met), and threonine (Thr) in the diets of 7- to 9-month-old Holstein heifers. The experiment was conducted for three months with 72 Holstein heifers (age = 22 ± 0.5 weeks old; BW = 200 ± 9.0 kg; mean ± standard deviation). Following an initial two weeks adaptation period, heifers were allocated to one of four treatments: a theoretically balanced amino acid diet (positive control [PC]; 1.00% Lys, 0.33% Met, and 0.72% Thr), a 30% Lys deleted diet (partially deleted Lys [PD-Lys]; 0.66% Lys, 0.33% Met, and 0.72% Thr), a 30% Met deleted diet (partially deleted Met, [PD-Met]; 1.00% Lys, 0.22% Met, and 0.72% Thr), and a 30% Thr deleted diet (partially deleted Thr [PD-Thr]; 1.00% Lys, 0.33% Met, and 0.45% Thr). Experimental animals were fed a corn-soybean meal-based concentrate and alfalfa hay. In addition, the animals were provided with supplemental Lys, Met, and Thr (ruminal bypass). The results found no differences in the growth performance and nitrogen retention between PD-Thr treatment and PC treatment (p > 0.05). The average daily gain (p = 0.0013) and feed conversion efficiency (p = 0.0057) of eight- to ninr-month-old heifers were lower in both PD-Lys and PD-Met treatment than those in PC treatment. According to growth performance, Lys was the first limiting AA, followed by Met and Thr. Moreover, nine-month-old Holstein heifers in PD-Lys treatment and PD-Met treatment had higher levels of serum urea nitrogen (p = 0.0021), urea nitrogen (p = 0.0011) and total excreted N (p = 0.0324) than those in PC treatment, which showed that nitrogen retention significantly decreased (p = 0.0048) as dietary Lys and Met levels decreased. The limiting sequence based on nitrogen retention was the same as that based on growth performance. The appropriate ratio of Lys, Met, and Thr in the diet based on nitrogen retention was 100:32:57. In summary, the limiting sequence and appropriate amino acid ratio of Lys, Met, and Thr for seven- to nine-month-old Holstein heifers fed a corn-soybean meal-based diet were Lys > Met > Thr and 100:32:57, respectively.

20.
Animals (Basel) ; 9(7)2019 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-31311119

RESUMEN

We investigated the effects of different types of early feeding on rumen fermentation parameters and the bacterial community in calves. Fifty-four Holstein calves were assigned to three treatments and fed whole milk (M), pasteurized waste milk (WM), or milk replacer (MR). Male calves were slaughtered at the age of two months to measure the stomach masses. The female calves were followed for six months to determine the body weight, blood indices, rumen fermentation, and ruminal bacterial community. At the age of two months, the average daily gain was lower, but the concentration of total volatile fatty acids was greater in the MR group. Starter intake and stomach mass were lower, but the isovalerate molar proportion was greater in the WM group. The blood indices and ruminal bacterial community of the WM group differed from those of the other groups. At the age of six months, the ruminal propionate molar proportion was lower, but the ruminal pH and acetate/propionate ratio were greater in the MR group. In conclusion, calves fed WM had different rumen fermentation and bacterial community during the weaning period, whereas feeding MR produced a long-lasting effect on the rumen environment.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...