Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Polymers (Basel) ; 15(24)2023 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-38139885

RESUMEN

Quasi-static indentation (QSI) experiments are conducted to investigate the localization, identification and evolution of induced damage in laminate composite up to delamination initiation using acoustic emission (AE) techniques. In this study, we propose a continuous wavelet transform (CWT)-based damage localization method for composites, which can simultaneously identify two damage modes, namely matrix cracking and delamination. The experimental findings demonstrate that the proposed algorithm, which utilizes the arrival time difference within a specific frequency band of the AE signal, effectively reduces the average location error from 3.81% to 2.31% compared to the existing method. Furthermore, the average signal location time has significantly decreased from several minutes to a mere 2 s. Matrix cracking and delamination are identified based on the maximum frequency band of CWT. Both types of damage exhibit prominent peaks within the 40 kHz-50 kHz frequency range, indicating their shared nature as manifestations of matrix damage, albeit with distinct modes of presentation. The first damage pattern that occurs is matrix cracking, succeeded by delamination damage. The nonlinear phase of the mechanical response curve is associated with the rapid aggregation of matrix cracking. Before the onset of macroscopic delamination damage, microscopic delamination damage begins to accumulate. A concentration of high-energy delamination damage signals predicts the initiation of macroscopic delamination.

2.
Materials (Basel) ; 14(18)2021 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-34576353

RESUMEN

Riveting is widely used in aircraft manufacturing. The strap butt joint is often used in the aircraft's main bearing area such as the aircraft docking area. The connection quality affects the reliability and safety of the aircraft directly. To study the effect of the rivet position on the connection quality of the strap butt joints, this paper analyzed the distribution of stress around the rivet hole at different positions by the finite element method, and then further analyzed the influence of the different rivet layouts on the connection quality of the strap butt joints by experiments. The static load tensile failure test of the joints was carried out, and the obtained tensile strength and failure mode of the strap butt joints showed that the main static tensile failure form of the single strap butt joint is that the whole rivets is sheared and the connecting sheets are separated. By changing the layout of different rivets, the connection strength can be maximized by reducing the outer row spacing (ORSD) of rivets. The results can be used for reference in the design of the riveting structure of aircraft panels.

3.
Materials (Basel) ; 13(16)2020 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-32824381

RESUMEN

Interference-fit riveting is one of the most widely used mechanical joining ways in aircraft assembly. The fatigue performance of riveted joints has a significant impact on the service life and reliability of aircraft. In this paper, the fatigue performance of the riveted lap joints with various rivet diameters and pitches are studied based on stress distribution analysis under tensile load. First, a theoretical model of the riveted lap joint under tensile load is developed by using the spring-mass model. The rivet-load stress, bypass stress, and interference stress around the riveted hole are analyzed. Then, the finite element (FE) model of riveted lap joints are established. The influence of rivet diameter and pitch on stress distribution around the riveted hole are discussed. Finally, the fatigue tests are conducted with riveted lap joint specimens to verify the theoretical model and FE results, and a good agreement is observed. Based on the simulation and experimental results, a good combination of structural parameters of the riveted lap joint is found which can optimize the stress distribution around the riveted hole and improve the fatigue life of the riveted lap joint.

4.
Materials (Basel) ; 13(15)2020 Aug 04.
Artículo en Inglés | MEDLINE | ID: mdl-32759772

RESUMEN

In aircraft manufacturing, riveting is one of the most important connection ways to fasten the sheet metal parts. The riveted single strap butt joints are mainly used in the load-bearing components of the aircraft such as the fuselage and wing panels. The connection quality and fatigue performance of the riveted joints directly affect the reliability and safety of the aircraft. In this paper, under the assumption of constant temperature, the fatigue strengthening mechanism of interference-fit riveting is introduced based on elastic-plastic mechanics and fracture mechanics. On this basis, the finite element (FE) models of the riveted single strap butt joints with various strap thickness and rivet sizes/arrangements are established. The residual stresses distribution around the riveted hole is analyzed. Furthermore, the fatigue tests of the riveted single strap butt joints with cyclic loading are carried out. The experimental results verified the correctness and effectiveness of the simulation model. Finally, the conclusion is drawn that increasing rivet size and strap thickness within the allowable weight range can improve the fatigue performance of the riveted single strap butt joints. The knowledge could be used to guide the structural design and optimization of the riveted butt joints against fatigue.

5.
Materials (Basel) ; 13(12)2020 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-32604822

RESUMEN

Interlayer burrs formation during drilling of stacked plates is a common problem in the field of aircraft assembly. Burrs elimination requires extra deburring operations which is time-consuming and costly. An effective way to inhibit interlayer burrs is to reduce the interlayer gap by preloading clamping force. In this paper, based on the theory of plates and shells, a mathematical model of interlayer gap with bidirectional clamping forces was established. The relationship between the upper and lower clamping forces was investigated when the interlayer gap reaches zero. The optimization of the bidirectional clamping forces was performed to reduce the degree and non-uniformity of the deflections of the stacked plates. Then, the finite element simulation was conducted to verify the mathematical model. Finally, drilling experiments were carried out on 2024-T3 aluminum alloy stacked plates based on the dual-machine-based automatic drilling and riveting system. The experimental results show that the optimized bidirectional clamping forces can significantly reduce the burr heights. The work in this paper enables us to understand the effect of bidirectional clamping forces on the interlayer gap and paves the way for the practical application.

6.
Sensors (Basel) ; 20(1)2020 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-31947848

RESUMEN

In order to develop equipment adapted to the aircraft pulse final assembly line, a vision-based aircraft transport platform system is developed. This article explores a guiding method between assembly stations which is low-cost and easy to change routes by using two-dimensional code and two complementary metal oxide semiconductor (CMOS) cameras. The two cameras installed on the front and back of the platform read the two-dimensional code containing station information to guide the platform. In the process of guiding, the theoretical position and posture of the platform at each assembly station are known, but there is a difference between the actual and theoretical values due to motion errors. To reduce the influence of the deviation on the navigation route, a localization method is proposed based on the two-dimensional images captured by the cameras. Canny edge detection is applied to the processed image to obtain the position of the two-dimensional code in the image, which can measure the angle/distance deviation of the platform. Then, the computer can locate the platform precisely by the information in the two-dimensional code and the deviation measured by the image. To verify the feasibility of the proposed method, experiments have been performed on the developed platform system. The results show that the distance and angle errors of the platform are within ±10 mm and ±0.15° respectively.

7.
Materials (Basel) ; 12(10)2019 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-31126112

RESUMEN

Aluminum profile surface defects can greatly affect the performance, safety, and reliability of products. Traditional human-based visual inspection has low accuracy and is time consuming, and machine vision-based methods depend on hand-crafted features that need to be carefully designed and lack robustness. To recognize the multiple types of defects with various size on aluminum profiles, a multiscale defect-detection network based on deep learning is proposed. Then, the network is trained and evaluated using aluminum profile surface defects images. Results show 84.6%, 48.5%, 96.9%, 97.9%, 96.9%, 42.5%, 47.2%, 100%, 100%, and 43.3% average precision (AP) for the 10 defect categories, respectively, with a mean AP of 75.8%, which illustrate the effectiveness of the network in aluminum profile surface defects detection. In addition, saliency maps also show the feasibility of the proposed network.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...