Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Antioxidants (Basel) ; 13(9)2024 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-39334747

RESUMEN

Pyrabactin resistance 1-like (PYL) proteins are abscisic acid (ABA) receptors that play a crucial role in the plant's response to adverse environmental conditions. However, as of yet, there is limited research on the role of PYL proteins in potato. In this study, a potato PYL gene, StPYL8-like, was identified through transcriptome analysis under drought stress. Molecular characterization revealed that the StPYL8-like protein possesses a highly conserved PYL family domain. Evolutionary analysis demonstrated that StPYL8-like protein clusters with various PYL proteins are involved in stress responses across different species. Functional assays showed that StPYL8-like robustly responds to different abiotic stresses, including drought and ABA treatment. Furthermore, the transient and stable expressions of StPYL8-like in tobacco enhanced their drought resistance, leading to increased plant height, leaf number, and fresh weight, as well as an improved root system. Transgenic tobacco carrying the StPYL8-like gene exhibited lower malondialdehyde (MDA) levels and higher proline accumulation and antioxidant enzyme activity compared to wild-type plants under drought conditions. Moreover, StPYL8-like upregulated the expression of stress-responsive genes (NtRD29A, NtLEA5, NtP5CS, NtPOD, NtSOD, and NtCAT) in transgenic plants subjected to drought stress. Collectively, these findings highlight the positive regulatory role of the StPYL8-like gene in enhancing potato plants' response to drought stress.

2.
Int J Mol Sci ; 25(16)2024 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-39201331

RESUMEN

PYR/PYL/RCAR proteins are abscisic acid (ABA) receptors that play a crucial role in plant responses to abiotic stresses. However, there have been no research reports on potato PYL so far. In this study, a potato PYL gene named StPYL16 was identified based on transcriptome data under drought stress. Molecular characteristics analysis revealed that the StPYL16 protein possesses an extremely conserved PYL family domain. The tissue expression results indicated that the StPYL16 is predominantly expressed at high levels in the underground parts, particularly in tubers. Abiotic stress response showed that StPYL16 has a significant response to drought treatment. Further research on the promoter showed that drought stress could enhance the activation activity of the StPYL16 promoter on the reporter gene. Then, transient and stable expression of StPYL16 in tobacco enhanced the drought resistance of transgenic plants, resulting in improved plant height, stem thickness, and root development. In addition, compared with wild-type plants, StPYL16 transgenic tobacco exhibited lower malondialdehyde (MDA) content, higher proline accumulation, and stronger superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT) activities. Meanwhile, StPYL16 also up-regulated the expression levels of stress-related genes (NtSOD, NtCAT, NtPOD, NtRD29A, NtLEA5, and NtP5CS) in transgenic plants under drought treatment. These findings indicated that the StPYL16 gene plays a positive regulatory role in potato responses to drought stress.


Asunto(s)
Sequías , Regulación de la Expresión Génica de las Plantas , Nicotiana , Proteínas de Plantas , Plantas Modificadas Genéticamente , Solanum tuberosum , Estrés Fisiológico , Solanum tuberosum/genética , Solanum tuberosum/metabolismo , Solanum tuberosum/fisiología , Plantas Modificadas Genéticamente/genética , Nicotiana/genética , Nicotiana/fisiología , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Estrés Fisiológico/genética
3.
Plants (Basel) ; 13(10)2024 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-38794470

RESUMEN

As global arid conditions worsen and groundwater resources diminish, drought stress has emerged as a critical impediment to plant growth and development globally, notably causing declines in crop yields and even the extinction of certain cultivated species. Numerous studies on drought resistance have demonstrated that DNA methylation dynamically interacts with plant responses to drought stress by modulating gene expression and developmental processes. However, the precise mechanisms underlying these interactions remain elusive. This article consolidates the latest research on the role of DNA methylation in plant responses to drought stress across various species, focusing on methods of methylation detection, mechanisms of methylation pattern alteration (including DNA de novo methylation, DNA maintenance methylation, and DNA demethylation), and overall responses to drought conditions. While many studies have observed significant shifts in genome-wide or gene promoter methylation levels in drought-stressed plants, the identification of specific genes and pathways involved remains limited. This review aims to furnish a reference for detailed research into plant responses to drought stress through epigenetic approaches, striving to identify drought resistance genes regulated by DNA methylation, specific signaling pathways, and their molecular mechanisms of action.

4.
Plants (Basel) ; 13(4)2024 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-38498458

RESUMEN

(1) Background: Potato is the most important tuber crop in the world that can contribute to food security. However, the crop has been shown to be sensitive to drought and its yields decline significantly during successive periods of stress. Drought triggers a number of responses in potato, ranging from physiological changes to fluctuations in growth rates and yields. In light of global climate change, it is important to understand the effects of thiamethoxam on potato growth and yield under drought conditions. (2) Methods: The objective was to evaluate the impact of thiamethoxam on improving drought resistance and yield of potato under drought conditions. The drought-tolerant and sensitive-genotypes Qingshu No. 9 and Atlantic were used for a two-year pot experiment. Potato seeds were coated with 70% thiamethoxam before sowing (treatment group (T)), with a control group without treatment (NT). Two experimental treatments were applied: normal irrigation (ND) and drought stress (D). (3) Results: The results showed that root length, plant yield, chlorophyll content and superoxide dismutase (SOD) activity significantly increased under both genotypes, while malondialdehyde (MDA) and proline (Pro) content were reduced under thiamethoxam under drought stress. The best indicators were obtained in the comprehensive evaluation for the T-D treatment, suggesting that the application of thiamethoxam under drought stress was more effective than normal irrigation. (4) Conclusions: Our results suggest that the application of thiamethoxam improves potato growth, thereby increasing drought tolerance and potato yield. However, thiamethoxam is a neonicotinoid pesticide, and the limitation of this study is that it did not explore the ecological effects of thiamethoxam, which need to be systematically studied in the future. Moreover, considering the potential risks of thiamethoxam to the environment, specific agronomic measures to effectively degrade thiamethoxam residue should be taken when it is applied in agricultural production.

5.
Int J Mol Sci ; 25(4)2024 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-38396758

RESUMEN

The C3HC4 RING finger gene (RING-HC) family is a zinc finger protein crucial to plant growth. However, there have been no studies on the RING-HC gene family in potato. In this study, 77 putative StRING-HCs were identified in the potato genome and grouped into three clusters based on phylogenetic relationships, the chromosome distribution, gene structure, conserved motif, gene duplication events, and synteny relationships, and cis-acting elements were systematically analyzed. By analyzing RNA-seq data of potato cultivars, the candidate StRING-HC genes that might participate in tissue development, abiotic stress, especially drought stress, and anthocyanin biosynthesis were further determined. Finally, a StRING-HC gene (Soltu.DM.09G017280 annotated as StRNF4-like), which was highly expressed in pigmented potato tubers was focused on. StRNF4-like localized in the nucleus, and Y2H assays showed that it could interact with the anthocyanin-regulating transcription factors (TFs) StbHLH1 of potato tubers, which is localized in the nucleus and membrane. Transient assays showed that StRNF4-like repressed anthocyanin accumulation in the leaves of Nicotiana tabacum and Nicotiana benthamiana by directly suppressing the activity of the dihydroflavonol reductase (DFR) promoter activated by StAN1 and StbHLH1. The results suggest that StRNF4-like might repress anthocyanin accumulation in potato tubers by interacting with StbHLH1. Our comprehensive analysis of the potato StRING-HCs family contributes valuable knowledge to the understanding of their functions in potato development, abiotic stress, hormone signaling, and anthocyanin biosynthesis.


Asunto(s)
Antocianinas , Solanum tuberosum , Antocianinas/metabolismo , Solanum tuberosum/genética , Solanum tuberosum/metabolismo , Filogenia , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Regiones Promotoras Genéticas , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
6.
BMC Genomics ; 25(1): 10, 2024 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-38166714

RESUMEN

BACKGROUND: Plant U-box (PUB) E3 ubiquitin ligases have vital effects on various biological processes. Therefore, a comprehensive and systematic identification of the members of the U-box gene family in potato will help to understand the evolution and function of U-box E3 ubiquitin ligases in plants. RESULTS: This work identified altogether 74 PUBs in the potato (StPUBs) and examined their gene structures, chromosomal distributions, and conserved motifs. There were seventy-four StPUB genes on ten chromosomes with diverse densities. As revealed by phylogenetic analysis on PUBs within potato, Arabidopsis, tomato (Solanum lycopersicum), cabbage (Brassica oleracea), rice (Oryza sativa), and corn (Zea mays), were clustered into eight subclasses (C1-C8). According to synteny analysis, there were 40 orthologous StPUB genes to Arabidopsis, 58 to tomato, 28 to cabbage, 7 to rice, and 8 to corn. In addition, RNA-seq data downloaded from PGSC were utilized to reveal StPUBs' abiotic stress responses and tissue-specific expression in the doubled-monoploid potato (DM). Inaddition, we performed RNA-seq on the 'Atlantic' (drought-sensitive cultivar, DS) and the 'Qingshu NO.9' (drought-tolerant cultivar, DT) in early flowering, full-blooming, along with flower-falling stages to detect genes that might be involved in response to drought stress. Finally, quantitative real-time PCR (qPCR) was carried out to analyze three candidate genes for their expression levels within 100 mM NaCl- and 10% PEG 6000 (w/v)-treated potato plantlets for a 24-h period. Furthermore, we analyzed the drought tolerance of StPUB25 transgenic plants and found that overexpression of StPUB25 significantly increased peroxidase (POD) activity, reduced ROS (reactive oxygen species) and MDA (malondialdehyde) accumulation compared with wild-type (WT) plants, and enhancing drought tolerance of the transgenic plants. CONCLUSION: In this study, three candidate genes related to drought tolerance in potato were excavated, and the function of StPUB25 under drought stress was verified. These results should provide valuable information to understand the potato StPUB gene family and investigate the molecular mechanisms of StPUBs regulating potato drought tolerance.


Asunto(s)
Arabidopsis , Solanum tuberosum , Ubiquitina-Proteína Ligasas/genética , Solanum tuberosum/genética , Solanum tuberosum/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Resistencia a la Sequía , Filogenia , Sequías , Ubiquitinas/genética , Estrés Fisiológico/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regulación de la Expresión Génica de las Plantas , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/metabolismo
7.
Plants (Basel) ; 12(22)2023 Nov 09.
Artículo en Inglés | MEDLINE | ID: mdl-38005706

RESUMEN

Abscisic acid (ABA) is an important stress hormone that affects plants' tolerance to stress. Changes in the content of abscisic can have an impact on plant responses to abiotic stress. The abscisic acid aldehyde oxidase (AAO) plays a crucial role in the final step in the synthesis of abscisic acid; therefore, understanding the function of the AAO gene family is of great significance for insight into plants' response to abiotic stresses. In this study, Solanum tuberosum AAO (StAAO) members were exhaustively explored using genome databases, and nine StAAOs were identified. Chromosomal location analysis indicated that StAAO genes mapped to 4 of the 14 potato chromosomes. Further analyses of gene structure and motif composition showed that members of the specific StAAO subfamily showed relatively conserved characteristics. Phylogenetic relationship analysis indicated that StAAOs proteins were divided into three major clades. Promoter analysis showed that most StAAO promoters contained cis-elements related to abiotic stress response and plant hormones. The results of tissue-specific expression analysis indicated that StAAO4 was predominantly expressed in the roots. Analysis of transcriptome data revealed that StAAO2/4/6 genes responded significantly to drought treatments. Moreover, further qRT-PCR analysis results indicated that StAAO2/4/6 not only significantly responded to drought stress but also to various phytohormone (ABA, SA, and MeJA) and abiotic stresses (salt and low temperature), albeit with different expression patterns. In summary, our study provides comprehensive insights into the sequence characteristics, structural properties, evolutionary relationships, and expression patterns of the StAAO gene family. These findings lay the foundation for a deeper understanding of the StAAO gene family and offer a potential genetic resource for breeding drought-resistant potato varieties.

8.
Int J Mol Sci ; 24(20)2023 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-37894803

RESUMEN

As an important hormone response gene, Gretchen Hagen 3 (GH3) maintains hormonal homeostasis by conjugating excess auxin with amino acids during plant stress-related signaling pathways. GH3 genes have been characterized in many plant species, but they are rarely reported in potato. Here, 19 StGH3 genes were isolated and characterized. Phylogenetic analysis indicated that StGH3s were divided into two categories (group I and group III). Analyses of gene structure and motif composition showed that the members of a specific StGH3 subfamily are relatively conserved. Collinearity analysis of StGH3 genes in potato and other plants laid a foundation for further exploring the evolutionary characteristics of the StGH3 genes. Promoter analysis showed that most StGH3 promoters contained hormone and abiotic stress response elements. Multiple transcriptome studies indicated that some StGH3 genes were responsive to ABA, water deficits, and salt treatments. Moreover, qRT-PCR analysis indicated that StGH3 genes could be induced by phytohormones (ABA, SA, and MeJA) and abiotic stresses (water deficit, high salt, and low temperature), although with different patterns. Furthermore, transgenic tobacco with transient overexpression of the StGH3.3 gene showed positive regulation in response to water deficits by increasing proline accumulation and reducing the leaf water loss rate. These results suggested that StGH3 genes may be involved in the response to abiotic stress through hormonal signal pathways. Overall, this study provides useful insights into the evolution and function of StGH3s and lays a foundation for further study on the molecular mechanisms of StGH3s in the regulation of potato drought resistance.


Asunto(s)
Solanum tuberosum , Solanum tuberosum/genética , Solanum tuberosum/metabolismo , Filogenia , Sequías , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Estrés Fisiológico , Cloruro de Sodio/farmacología , Agua/metabolismo , Hormonas , Regulación de la Expresión Génica de las Plantas
9.
Int J Mol Sci ; 24(15)2023 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-37569590

RESUMEN

Drought stress is a major threat to sustainable crop production worldwide. Despite the positive role of calcium (Ca2+) in improving plant drought tolerance in different crops, little attention has been paid to its role in mitigating drought stress in potatoes. In the present study, we studied the effect of foliar chelated sugar alcohol calcium treatments on two potato cultivars with different drought responses applied 15 and 30 days after limiting soil moisture. The results showed that the foliar application of calcium treatments alleviated the SPAD chlorophyll loss of the drought-sensitive cultivar 'Atlantic' (Atl) and reduced the inhibition of photosynthetic parameters, leaf anatomy deformation, and MDA and H2O2 content of both cultivars under drought stress. The Ca2+ treatments changed the expression of several Calcium-Dependent Protein Kinase (StCDPK) genes involved in calcium sensing and signaling and significantly increased antioxidant enzyme activities, average tuber weight per plant, and tuber quality of both cultivars. We conclude that calcium spray treatments improved the drought tolerance of both potato cultivars and were especially effective for the drought-sensitive cultivar. The present work suggests that the foliar application of calcium is a promising strategy to improve commercial potato yields and the economic efficiency of potato production under drought stress conditions.


Asunto(s)
Solanum tuberosum , Solanum tuberosum/genética , Calcio/metabolismo , Sequías , Alcoholes del Azúcar/farmacología , Peróxido de Hidrógeno/metabolismo , Fotosíntesis
10.
Food Res Int ; 170: 112997, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37316022

RESUMEN

Not least because it is adaptable to a variety of geographies and climates, potato (Solanum tuberosum L.) is grown across much of the world. Pigmented potato tubers have been found to contain large quantities of flavonoids, which have various functional roles and act as antioxidants in the human diet. However, the effect of altitude on the biosynthesis and accumulation of flavonoids in potato tubers is poorly characterized. Here we carried out an integrated metabolomic and transcriptomic study in order to evaluate how cultivation at low (800 m), moderate (1800 m), and high (3600 m) altitude affects flavonoid biosynthesis in pigmented potato tubers. Both red and purple potato tubers grown at a high altitude contained the highest flavonoid content, and the most highly pigmented flesh, followed by those grown at a low altitude. Co-expression network analysis revealed three modules containing genes which were positively correlated with altitude-responsive flavonoid accumulation. The anthocyanin repressors StMYBATV and StMYB3 exhibited a significant positive relationship with altitude-responsive flavonoid accumulation. The repressive function of StMYB3 was further verified in tobacco flowers and potato tubers. The results presented here add to the growing body of knowledge regarding the response of flavonoid biosynthesis to environmental conditions, and should aid in efforts to develop novel varieties of pigmented potatoes for use across different geographies.


Asunto(s)
Solanum tuberosum , Transcriptoma , Humanos , Solanum tuberosum/genética , Flavonoides , Altitud , Perfilación de la Expresión Génica
11.
iScience ; 26(2): 105903, 2023 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-36818280

RESUMEN

Potatoes consist of flavonoids that provide health benefits for human consumers. To learn more about how potato tuber flavonoid accumulation and flesh pigmentation are controlled, we analyzed the transcriptomic and metabolomic profile of potato tubers from three colored potato clones at three developmental phases using an integrated approach. From the 72 flavonoids identified in pigmented flesh, differential abundance was noted for anthocyanins, flavonols, and flavones. Weighted gene co-expression network analysis further allowed modules and candidate genes that positively or negatively regulate flavonoid biosynthesis to be identified. Furthermore, an R2R3-MYB repressor StMYB3 and an R3-MYB repressor StMYBATV involved in the modulation of anthocyanin biosynthesis during tuber development were identified. Both StMYB3 and StMYBATV could interact with the cofactor StbHLH1 and repress anthocyanin biosynthesis. Our results indicate a feedback regulatory mechanism of a coordinated MYB activator-repressor network on fine-tuning of potato tuber pigmentation during tuber development.

12.
Int J Mol Sci ; 24(2)2023 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-36674521

RESUMEN

Sucrose non-ferment 1-related protein kinase 2 (SnRK2) is a highly conserved protein kinase in plants that plays an important role in regulating plant response to drought stress. Although it has been reported in some plants, the evolutionary relationship of potato SnRK2s and their function in drought resistance have not been systematically analyzed. In this study, molecular characteristic analysis showed that 8 StSnRK2s were distributed on six chromosomes, coding proteins were divided into three subgroups, and StSnRK2s clustered in the same subgroup had similar conserved motifs and domains. In addition, StSnRK2 has a wide range of replication events in some species, making it closer to dicots in the process of evolution. In addition, the average nonsynonymous substitution rate/synonymous substitution rate (Ka/Ks) value of SnRK2s in monocots was higher than that of dicots. The codon usage index showed that SnRK2s prefer to use cytosine 3 (C3s), guanine 3 (G3s) and GC content (GC3s) in monocots, whereas thymine 3 (T3s) and adenine 3 (A3s) are preferred in dicots. Furthermore, stress response analysis showed that the expression of StSnRK2s under different degrees of drought stress significantly correlated with one or more stress-related physiological indices, such as proline and malondialdehyde (MDA) content, superoxide dismutase (SOD) and catalase (CAT) activity, ion leakage (IL) etc. The drought resistance of StSnRK2 transgenic plants was determined to occur in the order of StSnRK2.1/2.8 > StSnRK2.2/2.5 > StSnRK2.4/2.6 > StSnRK2.3 > StSnRK2.7, was attributed to not only lower IL but also higher proline, soluble sugar contents and stress-related genes in transgenic plants compared to wild type (WT). In conclusion, this study provides useful insights into the evolution and function of StSnRK2s and lays a foundation for further study on the molecular mechanism of StSnRK2s regulating potato drought resistance.


Asunto(s)
Resistencia a la Sequía , Proteínas de Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Nicotiana/metabolismo , Sequías , Proteínas Quinasas/metabolismo , Antioxidantes , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/metabolismo , Prolina/metabolismo , Regulación de la Expresión Génica de las Plantas , Estrés Fisiológico/genética
13.
Genes (Basel) ; 13(12)2022 11 30.
Artículo en Inglés | MEDLINE | ID: mdl-36553527

RESUMEN

Whether DNA methylation modification affects the gene transcription and expression of potatoes under drought stress is still unknown. In this study, we used comparative transcriptomics to explore the expression pattern of related genes of the drought-tolerant variety Qingshu 9 (Q) and the drought-sensitive variety Atlantic (A) under drought stress and DNA methylation inhibitor treatment. The results showed that there was a significant difference in the number of DEGs between the two varieties' responses to mannitol and 5-azad C, especially when they were co-treated with two reagents, and the gene expression of Q was more sensitive to mannitol after two hours. Furthermore, we found that these differentially expressed genes (DEGs) were significantly enriched in DNA replication, transcription, translation, carbohydrate metabolism, photosynthesis, signal transduction, and glutathione metabolism. These results indicate that the difference in the background of methylation leads to the difference in drought resistance of the two varieties. The complexity of the DNA methylation of variety Q might be higher than that of variety A, and the method of methylation regulation is more refined. This study systematically expands the understanding of the molecular mechanism wherein DNA methylation regulates the response to drought stress.


Asunto(s)
Solanum tuberosum , Solanum tuberosum/fisiología , Transcriptoma/genética , Sequías , Metilación de ADN/genética , Manitol
14.
Front Plant Sci ; 13: 1007866, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36340359

RESUMEN

Potato is one of the most important vegetable crops worldwide. Its growth, development and ultimately yield is hindered by drought stress condition. Breeding and selection of deep-rooted and drought-tolerant potato varieties has become a prime approach for improving the yield and quality of potato (Solanum tuberosum L.) in arid and semiarid areas. A comprehensive understanding of root development-related genes has enabled scientists to formulate strategies to incorporate them into breeding to improve complex agronomic traits and provide opportunities for the development of stress tolerant germplasm. Root response to drought stress is an intricate process regulated through complex transcriptional regulatory network. To understand the rooting depth and molecular mechanism, regulating root response to drought stress in potato, transcriptome dynamics of roots at different stages of drought stress were analyzed in deep (C119) and shallow-rooted (C16) cultivars. Stage-specific expression was observed for a significant proportion of genes in each cultivar and it was inferred that as compared to C16 (shallow-rooted), approximately half of the genes were differentially expressed in deep-rooted cultivar (C119). In C16 and C119, 11 and 14 coexpressed gene modules, respectively, were significantly associated with physiological traits under drought stress. In a comparative analysis, some modules were different between the two cultivars and were associated with differential response to specific drought stress stage. Transcriptional regulatory networks were constructed, and key components determining rooting depth were identified. Through the results, we found that rooting depth (shallow vs deep) was largely determined by plant-type, cell wall organization or biogenesis, hemicellulose metabolic process, and polysaccharide metabolic process. In addition, candidate genes responding to drought stress were identified in deep (C119) and shallow (C16) rooted potato varieties. The results of this study will be a valuable source for further investigations on the role of candidate gene(s) that affect rooting depth and drought tolerance mechanisms in potato.

15.
Front Genet ; 13: 996203, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36246614

RESUMEN

The second messenger calcium (Ca2+) is a ubiquitous intracellular signaling molecule found in eukaryotic cells. In plants, the multigene family of calcium-dependent protein kinases (CDPKs) plays an important role in regulating plant growth, development, and stress tolerance. CDPKs sense changes in intracellular Ca2+ concentration and translate them into phosphorylation events that initiate downstream signaling processes. Several functional and expression studies on different CDPKs and their encoding genes have confirmed their multifunctional role in stress. Here, we provide an overview of the signal transduction mechanisms and functional roles of CDPKs. This review includes details on the regulation of secondary metabolites, nutrient uptake, regulation of flower development, hormonal regulation, and biotic and abiotic stress responses.

16.
Int J Mol Sci ; 23(19)2022 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-36232779

RESUMEN

Crop growth and development are frequently affected by biotic and abiotic stresses. The adaptation of crops to stress is mostly achieved by regulating specific genes. The root system is the primary organ for nutrient and water uptake, and has an important role in drought stress response. The improvement of stress tolerance to increase crop yield potential and yield stability is a traditional goal of breeders in cultivar development using integrated breeding methods. An improved understanding of genes that control root development will enable the formulation of strategies to incorporate stress-tolerant genes into breeding for complex agronomic traits and provide opportunities for developing stress-tolerant germplasm. We screened the genes associated with root growth and development from diverse plants including Arabidopsis, rice, maize, pepper and tomato. This paper provides a theoretical basis for the application of root-related genes in molecular breeding to achieve crop drought tolerance by the improvement of root architecture.


Asunto(s)
Arabidopsis , Sequías , Productos Agrícolas/genética , Fitomejoramiento , Estrés Fisiológico/genética , Agua
17.
Genes (Basel) ; 13(8)2022 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-36011289

RESUMEN

The study was conducted with C31 and C80 genotypes of the potato (Solanum tuberosum L.), which are tolerant and susceptible to phosphite (Phi, H2PO3), respectively. To decipher the molecular mechanisms underlying tolerance and susceptibility to Phi in the potato, RNA sequencing was used to study the global transcriptional patterns of the two genotypes. Media were prepared with 0.25 and 0.50 mM Phi, No-phosphorus (P), and 1.25 mM (phosphate, Pi as control). The values of fragments per kilobase of exon per million mapped fragments of the samples were also subjected to a principal component analysis, grouping the biological replicates of each sample. Using stringent criteria, a minimum of 819 differential (DEGs) were detected in both C80-Phi-0.25_vs_C80-Phi-0.50 (comprising 517 upregulated and 302 downregulated) and C80-Phi-0.50_vs_C80-Phi-0.25 (comprising 302 upregulated and 517 downregulated) and a maximum of 5214 DEGs in both C31-Con_vs_C31-Phi-0.25 (comprising 1947 upregulated and 3267 downregulated) and C31-Phi-0.25_vs_C31-Con (comprising 3267 upregulated and 1947 downregulated). DEGs related to the ribosome, plant hormone signal transduction, photosynthesis, and plant-pathogen interaction performed important functions under Phi stress, as shown by the Kyoto Encyclopedia of Genes and Genomes annotation. The expressions of transcription factors increased significantly in C31 compared with C80. For example, the expressions of Soltu.DM.01G047240, Soltu.DM.08G015900, Soltu.DM.06G012130, and Soltu.DM.08G012710 increased under P deficiency conditions (Phi-0.25, Phi-0.50, and No-P) relative to the control (P sufficiency) in C31. This study adds to the growing body of transcriptome data on Phi stress and provides important clues to the Phi tolerance response of the C31 genotype.


Asunto(s)
Fosfitos , Solanum tuberosum , Vías Biosintéticas , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Fosfitos/metabolismo , Solanum tuberosum/fisiología , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
18.
Plants (Basel) ; 11(15)2022 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-35956505

RESUMEN

The selection and breeding of deep rooting and drought-tolerant varieties has become a promising approach for improving the yield and adaptability of potato (Solanum tuberosum L.) in arid and semiarid areas. Therefore, the discovery of root-development-related genes and drought tolerance signaling pathways in potato is important. In this study, we used deep-rooting (C119) and shallow-rooting (C16) potato genotypes, with different levels of drought tolerance, to achieve this objective. Both genotypes were treated with 150 mM mannitol for 0 h (T0), 2 h (T2), 6 h (T6), 12 h (T12), and 24 h (T24), and their root tissues were subjected to comparative transcriptome analysis. A total of 531, 1571, 1247, and 3540 differentially expressed genes (DEGs) in C16 and 1531, 1108, 674, and 4850 DEGs in C119 were identified in T2 vs. T0, T6 vs. T2, T12 vs. T6, and T24 vs. T12 comparisons, respectively. Gene expression analysis indicated that a delay in the onset of drought-induced transcriptional changes in C16 compared with C119. Functional enrichment analysis revealed genotype-specific biological processes involved in drought stress tolerance. The metabolic pathways of plant hormone transduction and MAPK signaling were heavily involved in the resistance of C16 and C119 to drought, while abscisic acid (ABA), ethylene, and salicylic acid signal transduction pathways likely played more important roles in C119 stress responses. Furthermore, genes involved in root cell elongation and division showed differential expression between the two genotypes under drought stress. Overall, this study provides important information for the marker-assisted selection and breeding of drought-tolerant potato genotypes.

19.
Front Genet ; 13: 874397, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35669192

RESUMEN

Calcium-dependent protein kinases (CDPKs) are a class of serine/threonine protein kinases encoded by several gene families that play key roles in stress response and plant growth and development. In this study, the BLAST method was used to search for protein sequences of the potato Calcium-dependent protein kinase gene family. The chromosome location, phylogeny, gene structures, gene duplication, cis-acting elements, protein-protein interaction, and expression profiles were analyzed. Twenty-five CDPK genes in the potato genome were identified based on RNA-seq data and were clustered into four groups (I-IV) based on their structural features and phylogenetic analysis. The result showed the composition of the promoter region of the StCDPKs gene, including light-responsive elements such as Box4, hormone-responsive elements such as ABRE, and stress-responsive elements such as MBS. Four pairs of segmental duplications were found in StCDPKs genes and the Ka/Ks ratios were below 1, indicating a purifying selection of the genes. The protein-protein interaction network revealed defense-related proteins such as; respiratory burst oxidase homologs (RBOHs) interacting with potato CDPKs. Transcript abundance was measured via RT-PCR between the two cultivars and their relative expression of CDPK genes was analyzed after 15, 20, and 25 days of drought. There were varied expression patterns of StCDPK3/13/21 and 23, between the two potato cultivars under mannitol induced-drought conditions. Correlation analysis showed that StCDPK21/22 and StCDPK3 may be the major differentially expressed genes involved in the regulation of malondialdehyde (MDA) and proline content in response to drought stress, opening a new research direction for genetic improvement of drought resistance in potato.

20.
Front Plant Sci ; 13: 836063, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35665176

RESUMEN

Potato (Solanum tuberosum L) is the third important crop for providing calories to a large human population, and is considered sensitive to moderately sensitive to drought stress conditions. The development of drought-tolerant, elite varieties of potato is a challenging task, which can be achieved through molecular breeding. Recently, the DEEPER ROOTING 1 (DRO1) gene has been identified in rice, which influences plant root system and regulates grain yield under drought stress conditions. The potato StDRO1 protein is mainly localized in the plasma membrane of tobacco leaf cells, and overexpression analysis of StDRO1 in Arabidopsis resulted in an increased lateral root number, but decreased lateral root angle, lateral branch angle, and silique angle. Additionally, the drought treatment analysis indicated that StDRO1 regulated drought tolerance and rescued the defective root architecture and drought-tolerant phenotypes of Atdro1, an Arabidopsis AtDRO1 null mutant. Furthermore, StDRO1 expression was significantly higher in the drought-tolerant potato cultivar "Unica" compared to the drought-sensitive cultivar "Atlantic." The transcriptional response of StDRO1 under drought stress occurred significantly earlier in Unica than in Atlantic. Collectively, the outcome of the present investigation elucidated the role of DRO1 function in the alternation of root architecture, which potentially acts as a key gene in the development of a drought stress-tolerant cultivar. Furthermore, these findings will provide the theoretical basis for molecular breeding of drought-tolerant potato cultivars for the farming community.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...