RESUMEN
A series of 2-(trifluoromethyl)-4-hydroxyquinoline derivatives were designed and synthesized with introduction of the antibacterial fragment amino alcohols, and their antibacterial activity against plant phytopathogenic bacteria was evaluated for the development of quinoline bactericides. It is worth noting that compound Qa5 exhibited excellent antibacterial activity in vitro with a minimum inhibitory concentration (MIC) value of 3.12 µg/mL against Xanthomonas oryzae (Xoo). Furthermore, in vivo assays demonstrated that the protective efficacy of Qa5 against rice bacterial blight at 200 µg/mL (33.0%) was superior to that of the commercial agent bismerthiazol (18.3%), while the curative efficacy (35.0%) was comparable to that of bismerthiazol (35.7%). The antibacterial mechanisms of Qa5 indicated that it affected the activity of bacteria by inducing intracellular oxidative damage in Xoo and disrupting the integrity of the bacterial cell membrane. The above results demonstrated that the novel quinoline derivative Qa5 possessed excellent in vitro and in vivo antibacterial activity, indicating its potential as a novel green agricultural antibacterial agent.
RESUMEN
BACKGROUND: Fungal diseases present a significant threat to global agriculture, necessitating the development of new, safe, and effective fungicides. Existing fungicides face resistance and health risks, prompting the synthesis of novel compounds. Researchers have synthesized aldehyde-based thiourea and thiazolyl hydrazine derivatives, evaluating their antifungal activities to identify impactful pesticide molecules. RESULTS: The results showed that most of the compounds had broad-spectrum antifungal activity against six plant pathogenic fungi and four post-harvest fungi. Notably, compound LN18 showed the best antifungal activity against Monilinia fructicola with a half-maximal effective concentration (EC50) of 0.17 µg mL-1, which was better than the commercial fungicide natamycin. A structure-activity relationship (SAR) study showed that the presence of unsaturated double bonds in the structure and the length of the carbon chain were the main factors affecting antifungal activity. The presence of unsaturated double bonds and an increase in the length of the carbon chain greatly improved inhibitory activity against the tested pathogens. The preliminary mechanism study showed that LN18 could damage the integrity of the mycelial plasma membrane, leading to leakage of intracellular nucleic acid and protein. LN18 also induced an increase in the intracellular reactive oxygen species level to exert its antifungal effects. In addition, compound LN18 had a stronger antifungal effect in vivo, and better phytotoxicity than natamycin, indicating broad application prospects in agriculture. CONCLUSION: Aldehydes-thiourea and thiazolyl hydrazine derivatives demonstrate remarkable antifungal efficacy against plant pathogenic and post-harvest fungi, offering a promising avenue for commercialization as highly efficacious, cost-effective and safe antifungal agents. © 2024 Society of Chemical Industry.
RESUMEN
INTRODUCTION: Rhizoctonia solani Kühn is a pathogen causing rice sheath blight (ShB). Ammonium transporter 1 (AMT1) promotes resistance of rice to ShB by activating ethylene signaling. However, how AMT1 activates ethylene signaling remains unclear. OBJECTIVE: In this study, the indeterminate domain 10 (IDD10)-NAC079 interaction model was used to investigate whether ethylene signaling is modulated downstream of ammonium signaling and modulates ammonium-mediated ShB resistance. METHODS: RT-qPCR assay was used to identify the relative expression levels of nitrogen and ethylene related genes. Yeast two-hybrid assays, Bimolecular fluorescence complementation (BiFC) and Co-immunoprecipitation (Co-IP) assay were conducted to verify the IDD10-NAC079-calcineurin B-like interacting protein kinase 31 (CIPK31) transcriptional complex. Yeast one-hybrid assay, Chromatin immunoprecipitation (ChIP) assay, and Electrophoretic mobility shift assay (EMSA) were used to verify whether ETR2 was activated by IDD10 and NAC079. Ethylene quantification assay was used to verify ethylene content in IDD10 transgenic plants. Genetic analysis is used to detect the response of IDD10, NAC079 and CIPK31 to ShB infestation. RESULTS: IDD10-NAC079 forms a transcription complex that activates ETR2 to inhibit the ethylene signaling pathway to negatively regulating ShB resistance. CIPK31 interacts and phosphorylates NAC079 to enhance its transcriptional activation activity. In addition, AMT1-mediated ammonium absorption and subsequent N assimilation inhibit the expression of IDD10 and CIPK31 to activate the ethylene signaling pathway, which positively regulates ShB resistance. CONCLUSION: The study identified the link between ammonium and ethylene signaling and improved the understanding of the rice resistance mechanism.
RESUMEN
BACKGROUND AND OBJECTIVES: Drug-coated balloons (DCBs) have exhibited promising results in coronary and peripheral artery diseases, but conclusive evidence is lacking in intracranial vasculature. We assessed the safety and efficacy of DCBs vs stent angioplasty for symptomatic intracranial atherosclerotic stenosis (sICAS) and initially identified patients who might have benefited most from DCB treatment. METHODS: A single-center, retrospective cohort study was conducted from June 2021 to May 2022 with 154 patients with sICAS divided into 2 treatment groups: a DCB group (with or without remedial stenting, n = 47) and a stent group (n = 107). The treatment outcomes were compared using 1:2 propensity score matching. The primary safety end point was perioperative stroke or mortality, and the primary efficacy end point was the rate of target vessel restenosis at 12 months. The degree of luminal change was analyzed as a subgroup, defined as the difference between the degree of stenosis at follow-up and immediately after intervention. RESULTS: One hundred eighteen patients were enrolled using propensity score matching, with 43 patients in the DCB group and 75 in the stent group. The incidence of perioperative adverse events was 2.3% in the DCB group and 8.0% in the stent group (P = .420). At a median follow-up of 12 months, the incidence of restenosis (11.9% [5/43] vs 28.0% [21/75], P = .045) and the median degree of stenosis (30% [20%, 44%] vs 30% [30%, 70%], P = .009, CI [0-0.01, 0.2]) were significantly lower in the DCB group than in the stent group. DCB angioplasty effectively prevented adverse events in the target vessel area and significantly reduced the degree of luminal change in the M1 segment of the middle cerebral artery (0 [0, 15%] vs 10% [0, 50%], P = .016). CONCLUSION: DCB angioplasty might be a safe and effective alternative to stent angioplasty to treat sICAS, particularly among patients with M1 segment of the middle cerebral artery stenosis.
RESUMEN
An undescribed trichodenone derivative (1), two new diketopiperazines (3 and 4) along with a bisabolane analog (2) were isolated from Trichoderma hamatum b-3. The structures of the new findings were established through comprehensive analyses of spectral evidences in HRESIMS, 1D and 2D NMR, Marfey's analysis as well as comparisons of ECD. The absolute configuration of 2 was unambiguously confirmed by NMR, ECD calculation and Mo2(AcO)4 induced circular dichroism. Compounds 1-4 were tested for their fungicidal effects against eight crop pathogenic fungi, among which 1 showed 51% inhibition against Sclerotinia sclerotiorum at a concentration of 50 µg/mL.
Asunto(s)
Hypocreales , Trichoderma , Estructura Molecular , Dicetopiperazinas/química , Trichoderma/químicaRESUMEN
Auxins and their analogs are widely used to promote root growth, flower and fruit development, and yield in crops. The action characteristics and application scope of various auxins are different. To overcome the limitations of existing auxins, expand the scope of applications, and reduce side effects, it is necessary to screen new auxin analogs. Here, we identified 3,4-dichlorophenylacetic acid (Dcaa) as having auxin-like activity and acting through the auxin signaling pathway in plants. At the physiological level, Dcaa promotes the elongation of oat coleoptile segments, the generation of adventitious roots, and the growth of crop roots. At the molecular level, Dcaa induces the expression of auxin-responsive genes and acts through auxin receptors. Molecular docking results showed that Dcaa can bind to auxin receptors, among which TIR1 has the highest binding activity. Application of Dcaa at the root tip of the DR5:GUS auxin-responsive reporter induces GUS expression in the root hair zone, which requires the PIN2 auxin efflux carrier. Dcaa also inhibits the endocytosis of PIN proteins like other auxins. These results provide a basis for the application of Dcaa in agricultural practices.
Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Ácidos Indolacéticos/farmacología , Ácidos Indolacéticos/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Simulación del Acoplamiento Molecular , Raíces de Plantas/metabolismoRESUMEN
Bone marrow stromal cell antigen 2 (BST2) is a type II transmembrane protein that serves critical roles in antiretroviral defense in the innate immune response. In addition, it has been suggested that BST2 is highly expressed in various types of human cancer and high BST2 expression is related to different clinicopathological parameters in cancer. The molecular mechanism underlying BST2 as a potential tumor biomarker in human solid tumors has been reported on; however, to the best of our knowledge, there has been no review published on the molecular mechanism of BST2 in human solid tumors. The present review focuses on human BST2 expression, structure and functions; the molecular mechanisms of BST2 in breast cancer, hepatocellular carcinoma, gastrointestinal tumor and other solid tumors; the therapeutic potential of BST2; and the possibility of BST2 as a potential marker. BST2 is involved in cell membrane integrity and lipid raft formation, which can activate epidermal growth factor receptor signaling pathways, providing a potential mechanistic link between BST2 and tumorigenesis. Notably, BST2 may be considered a universal tumor biomarker and a potential therapeutical target.
Asunto(s)
Neoplasias de la Mama , Neoplasias Hepáticas , Humanos , Femenino , Antígeno 2 del Estroma de la Médula Ósea/metabolismo , Proteínas Ligadas a GPI/genética , Proteínas Ligadas a GPI/metabolismo , Neoplasias de la Mama/patología , Transducción de Señal , Biomarcadores de Tumor/genética , BiologíaRESUMEN
Prostate cancer is the second incidence of malignant tumors in men worldwide. Its incidence and mortality are increasing year by year. Enhanced expression of Cav1 in prostate cancer has been linked to both proliferation and metastasis of cancer cells, influencing disease progression. Dysregulation of the Cav1 gene shows a notable association with prostate cancer. Nevertheless, there is no systematic review to report about molecular signal mechanism of Cav1 and drug treatment in prostate cancer. This article reviews the structure, physiological and pathological functions of Cav1, the pathogenic signaling pathways involved in prostate cancer, and the current drug treatment of prostate cancer. Cav1 mainly affects the occurrence of prostate cancer through AKT/mTOR, H-RAS/PLCε, CD147/MMPs and other pathways, as well as substance metabolism including lipid metabolism and aerobic glycolysis. Baicalein, simvastatin, triptolide and other drugs can effectively inhibit the growth of prostate cancer. As a biomarker of prostate cancer, Cav1 may provide a potential therapeutic target for the treatment of prostate cancer.
RESUMEN
In the process of ocean exploration, highly accurate and sensitive measurements of seawater temperature and pressure significantly impact the study of seawater's physical, chemical, and biological processes. In this paper, three different package structures, V-shape, square-shape, and semicircle-shape, are designed and fabricated, and an optical microfiber coupler combined Sagnac loop (OMCSL) is encapsulated in these structures with polydimethylsiloxane (PDMS). Then, the temperature and pressure response characteristics of the OMCSL, under different package structures, are analyzed by simulation and experiment. The experimental results show that structural change hardly affects temperature sensitivity, and square-shape has the highest pressure sensitivity. In addition, with an input error of 1% F.S., temperature and pressure errors were calculated, which shows that a semicircle-shape structure can increase the angle between lines in the sensitivity matrix method (SMM), and reduce the effect of the input error, thus optimizing the ill-conditioned matrix. Finally, this paper shows that using the machine learning method (MLM) effectively improves demodulation accuracy. In conclusion, this paper proposes to optimize the ill-conditioned matrix problem in SMM demodulation by improving sensitivity with structural optimization, which essentially explains the cause of the large errors for multiparameter cross-sensitivity. In addition, this paper proposes to use the MLM to solve the problem of large errors in the SMM, which provides a new method to solve the problem of the ill-conditioned matrix in SMM demodulation. These have practical implications for engineering an all-optical sensor that can be used for detection in the ocean environment.
RESUMEN
A wide variety of N-alkylazaheterocyclic salts are conveniently synthesized from polyol esters and azaheterocyclic salts under solventless conditions. In particular, paraquat-like derivatives showed comparable herbicidal activity toward several common weeds. Mechanistic studies suggest that polyesters likely underwent partial hydrolysis and neighboring group participating dehydration under the action of acidic salt to generate five-membered ring intermediates, which reacted with the azaheterocycle to accomplish the N-alkylation.
RESUMEN
Human endogenous retroviruses (HERVs) have evolved from exogenous retroviruses and account for approximately 8% of the human genome. A growing number of findings suggest that the abnormal expression of HERV genes is associated with schizophrenia, multiple sclerosis, endometriosis, breast cancer, bladder cancer and other diseases. HERV-W env (syncytin-1) is a membrane glycoprotein which plays an important role in placental development. It includes embryo implantation, fusion of syncytiotrophoblasts and of fertilized eggs, and immune response. The abnormal expression of syncytin-1 is related to placental development-related diseases such as preeclampsia, infertility, and intrauterine growth restriction, as well as tumors such as neuroblastoma, endometrial cancer, and endometriosis. This review mainly focused on the molecular interactions of syncytin-1 in placental development-related diseases and tumors, to explore whether syncytin-1 can be an emerging biological marker and potential therapeutic target.
RESUMEN
Human cancer statistics show that an increased incidence of urologic cancers such as bladder cancer, prostate cancer, and renal cell carcinoma. Due to the lack of early markers and effective therapeutic targets, their prognosis is poor. Fascin-1 is an actin-binding protein, which functions in the formation of cell protrusions by cross-linking with actin filaments. Studies have found that fascin-1 expression is elevated in most human cancers and is related to outcomes such as neoplasm metastasis, reduced survival, and increased aggressiveness. Fascin-1 has been considered as a potential therapeutic target for urologic cancers, but there is no comprehensive review to evaluate these studies. This review aimed to provide an enhanced literature review, outline, and summarize the mechanism of fascin-1 in urologic cancers and discuss the therapeutic potential of fascin-1 and the possibility of its use as a potential marker. We also focused on the correlation between the overexpression of fascin-1 and clinicopathological parameters. Mechanistically, fascin-1 is regulated by several regulators and signaling pathways (such as long noncoding RNA, microRNA, c-Jun N-terminal kinase, and extracellular regulated protein kinases). The overexpression of fascin-1 is related to clinicopathologic parameters such as pathological stage, bone or lymph node metastasis, and reduced disease-free survival. Several fascin-1 inhibitors (G2, NP-G2-044) have been evaluated in vitro and in preclinical models. The study proved the promising potential of fascin-1 as a newly developing biomarker and a potential therapeutic target that needs further investigation. The data also highlight the inadequacy of fascin-1 to serve as a novel biomarker for prostate cancer.
Asunto(s)
Biomarcadores de Tumor , Carcinoma de Células Renales , Proteínas Portadoras , Neoplasias Renales , Neoplasias de la Próstata , Neoplasias de la Vejiga Urinaria , Biomarcadores de Tumor/metabolismo , Proteínas Portadoras/metabolismo , Neoplasias de la Vejiga Urinaria/tratamiento farmacológico , Neoplasias de la Vejiga Urinaria/metabolismo , Neoplasias de la Vejiga Urinaria/patología , Neoplasias de la Próstata/tratamiento farmacológico , Neoplasias de la Próstata/metabolismo , Neoplasias de la Próstata/patología , Carcinoma de Células Renales/tratamiento farmacológico , Carcinoma de Células Renales/metabolismo , Carcinoma de Células Renales/patología , Neoplasias Renales/tratamiento farmacológico , Neoplasias Renales/metabolismo , Neoplasias Renales/patología , Humanos , Masculino , Terapia Molecular Dirigida , Metástasis LinfáticaRESUMEN
Metal coatings can protect the fragile optical fiber sensors and extend their life in harsh environments. However, simultaneous high-temperature strain sensing in a metal-coated optical fiber remains relatively unexplored. In this study, a nickel-coated fiber Bragg grating (FBG) cascaded with an air bubble cavity Fabry-Perot interferometer (FPI) fiber optic sensor was developed for simultaneous high temperature and strain sensing. The sensor was successfully tested at 545 °C for 0-1000 µÉ, and the characteristic matrix was used to decouple temperature and strain. The metal layer allows easy attachment to metal surfaces that operate at high temperatures, enabling sensor-object integration. As a result, the metal-coated cascaded optical fiber sensor has the potential to be used in real-world structural health monitoring.
RESUMEN
Streptochlorin is a kind of indole alkaloid derived from marine microorganisms. It is a promising lead compound due to its potent bioactivity in preventing many phytopathogens, as shown in our previous study. To explore the potential applications of this natural product, a series of novel benzoxaborole-containing streptochlorin derivatives were designed and synthesized through a one-step and catalyst-free reaction in water at room temperature. All target compounds were first screened for their antifungal profiles in vitro against six common phytopathogenic fungi. The results of bioassay revealed that most of the designed compounds exhibited more significant antifungal activities against Botrytis cinrea, Gibberella zeae, Rhizoctorzia solani, Colletotrichum lagenarium, and alternaria leaf spot under the concentration of 50 µg/mL, and this is highlighted by compounds 4i and 5f, which demonstrated impressive antifungal effects against G. zeae and R. solani, with their corresponding EC50 values 0.2983 and 0.2657 µg/mL, which are obviously better than positive control flutriafol and boscalid (5.2606 and 1.2048 µg/mL, respectively). Scanning electron microscopy on the hyphae morphology showed that compound 5b might cause mycelial abnormalities of G. zeae. 3D-QSAR studies of CoMFA and CoMSIA were carried out on 29 target compounds with antifungal activity against B. cinrea. The analysis results indicated that introducing appropriate electronegative groups at the 5-position of benzoxaborole and the 4,5-positions of the indole ring could effectively improve the anti-B. cinrea activity. Moreover, compound 5b showed good antifungal activities in vivo against Phytophthora capsici. Molecular docking was further explored to ascertain the practical value of the active compound as a potential inhibitor of LeuRS. The abovementioned results indicate that the designed benzoxaborole-containing streptochlorin derivatives could be further studied as template molecules of novel antifungal agents.
Asunto(s)
Antifúngicos , Antifúngicos/química , Antifúngicos/farmacología , Relación Estructura-Actividad Cuantitativa , Modelos Moleculares , Conformación Molecular , Simulación del Acoplamiento MolecularRESUMEN
BACKGROUND: Pesticides are indispensable in agriculture and can effectively improve the yields and quality of crops. Due to their weak water solubility, most pesticides need to be dissolved by adding solubilizing adjuvants. In this work, based on molecular recognition of the macrocyclic host, we developed a novel supramolecular adjuvant, called sulfonated azocalix[4]arene (SAC4A), which significantly improves the water solubility of pesticides. RESULTS: SAC4A presents multiple advantages, including high water solubility, strong binding affinity, universality, and simple preparation. SAC4A showed an average binding constant value of 1.66 × 105 M-1 for 25 pesticides. Phase solubility results indicated that SAC4A increased the water solubility of pesticides by 80-1310 times. The herbicidal, fungicidal, and insecticidal activities of supramolecular formulations were found to be superior to those of technical pesticides, and the herbicidal effects were even better than those of commercial formulations. CONCLUSION: Overall results revealed the potential of SAC4A to improve the solubility and effectiveness of pesticides, providing a new development idea for the application of adjuvants in agriculture. © 2023 Society of Chemical Industry.
Asunto(s)
Plaguicidas , Plaguicidas/química , Agricultura , Solubilidad , Agua/químicaRESUMEN
BACKGROUND: To obtain new environmentally friendly fungicides, we used the natural product pimprinine as the lead compound, and designed and synthesized two series of ring-opening derivatives of pimprinine containing amide/thioamide. We then studied their antifungal activity against six common plant pathogenic fungi in vitro. RESULTS: Most of the target compounds have good antifungal activity against six important plant pathogenic fungi in vitro. At a concentration of 50 µg ml-1 , compound 3o showed prominent antifungal effects on Alternaria solani and Rhioctornia solani, with inhibition rates of 91.8% and 97.4%, and a 50% effective concentration (EC50 ) of 6.2255 and 0.6969 µg ml-1 respectively. The EC50 of compound 3o against Alternaria solani was significantly lower than that of boscalid (13.0380 µg ml-1 ) and flutriafol (11.9057 µg ml-1 ). In addition, compound 3o had good antifungal activity against Sclerotinia sclerotiorum, cucumber powdery mildew, cucumber Botrytis cinerea and Phytophthora capsici in vivo; the antifungal activity of compound 3o against cucumber Botrytis cinerea is 91.7%. At the same time, docking results for highly active compound 3o with the presumed target succinate dehydrogenase and the molecular docking prediction scores of all compounds further indicate its possible antifungal activity mechanism. CONCLUSION: The designed and optimized derivative 3o of ring-opening pimprinine has good antifungal activity and can be used as a new antifungal drug for further research. © 2023 Society of Chemical Industry.
Asunto(s)
Antifúngicos , Fungicidas Industriales , Oxazoles , Amidas/farmacología , Antifúngicos/química , Botrytis , Fungicidas Industriales/química , Simulación del Acoplamiento Molecular , Estructura Molecular , Relación Estructura-Actividad , Oxazoles/químicaRESUMEN
Based on the structures of natural products streptochlorin and pimprinine derived from marine or soil microorganisms, a series of streptochlorin derivatives containing the nitrile group were designed and synthesized through acylation and oxidative annulation. Evaluation for antifungal activity showed that compound 3a could be regarded as the most promising candidate-it demonstrated over 85% growth inhibition against Botrytis cinerea, Gibberella zeae, and Colletotrichum lagenarium, as well as a broad antifungal spectrum in primary screening at the concentration of 50 µg/mL. The SAR study revealed that non-substituent or alkyl substituent at the 2-position of oxazole ring were favorable for antifungal activity, while aryl and monosubstituted aryl were detrimental to activity. Molecular docking models indicated that 3a formed hydrogen bonds and hydrophobic interactions with Leucyl-tRNA Synthetase, offering a perspective for the possible mechanism of action for antifungal activity of the target compounds.
Asunto(s)
Antifúngicos , Fungicidas Industriales , Antifúngicos/farmacología , Estructura Molecular , Relación Estructura-Actividad , Simulación del Acoplamiento Molecular , Oxazoles/química , Fungicidas Industriales/farmacologíaRESUMEN
The Panxi area in Sichuan Province is the main area for the production of truffles in China, and several species of truffle are known to exist in this region. Nevertheless, it is unclear what the differences in chemical composition between the truffles are. Using an ultra-high-performance liquid chromatography quadrupole/orbitrap high-resolution mass spectrometry coupled with Compound Discoverer 3.0, we identified chemical components in three mainly known truffles from the Panxi region. Further analysis of chemical composition differences was conducted using principal component analysis, and orthogonal partial least squares discriminant analysis. Note that, 78.9% of the variance was uncovered by the principal component analysis model. As a result of the orthogonal partial least squares discriminant analysis model, the three species of truffles (Tuber pesudohimalayense, Tuber indicum, and Tuber sinense) from Panxi were better discriminated, with R2 X, R2 Y, and Q2 being 0.821, 0.993, and 0.947, respectively. In this study, 87 components were identified. T. pesudohimalayense contained significantly higher levels of nine different compounds than the other two species. Hence, it was possible to identify similarities and differences between three species of truffles from Panxi in terms of chemical composition. This can be used as a basis for quality control.
Asunto(s)
Espectrometría de Masas , China , Análisis DiscriminanteRESUMEN
BACKGROUND: To study the effect of changing the piperidine ring of oxathiapiprolin on the fungicidal activity, we designed and synthesized novel piperazine thiazole derivatives containing oxime ether or oxime ester moieties, and studied their fungicidal activities against Phytophthora capsici in vitro. RESULTS: These derivatives showed moderate to good fungicidal activities against Phytophthora capsici, two oxime ether derivatives showed higher fungicidal activity in vitro than dimethomorph (EC50 = 0.1331 µg mL-1 ) and comparable to oxathiapiprolin (EC50 = 0.0042 µg mL-1 ). Oxime ester derivatives showed significantly reduced activities compared with oxime ether derivatives. Most of these derivatives showed broad-spectrum fungicidal activity against the other eight kinds of fungi. Moreover, four derivatives exhibited good antifungal activities in vivo against Phytophthora capsici, Pseudoperonospora cubensis, and Phytophthora infestans. The hyphae morphology study showed that compound 10d might cause mycelial abnormalities of Phytophthora capsici. CONCLUSION: The activity of 10b against Phytophthora infestans was better than that of mandipropamid, and compound 10d exhibited higher fungicidal activities against Pseudoperonospora cubensis and Phytophthora infestans than mandipropamid. These two derivatives emerged as promising candidates for antifungal drugs. © 2023 Society of Chemical Industry.
Asunto(s)
Fungicidas Industriales , Phytophthora infestans , Antifúngicos/química , Fungicidas Industriales/química , Tiazoles/farmacología , Éter/farmacología , Ésteres/farmacología , Oximas/farmacología , Éteres/farmacología , Éteres de Etila/farmacología , Piperazinas/farmacología , Relación Estructura-ActividadRESUMEN
A novel, to the best of our knowledge, sensor architecture for palladium-coated fiber Bragg gratings is proposed and demonstrated that allows highly accurate multi-parameter sensing and decoupling of hydrogen concentration from temperature. By means of partly Pd-coated Pi-shifted FBGs (PSFBGs), the notch wavelength of the narrow transmission band and the flank wavelength of the broader reflection band experience different hydrogen and temperature sensitivities. PSFBGs were calibrated at hydrogen concentrations between 800 and 10,000 ppm and temperatures from 20 to 40°C, and a decreased hydrogen sensitivity at increased temperatures was found. Nonlinear temperature-dependent hydrogen calibration functions were therefore determined. An iterative matrix algorithm was used to decouple hydrogen concentration and temperature and to account for the nonlinear calibration functions. Achieved improvements and results have great importance for real field applications of FBG-based hydrogen sensing.