Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Appl Opt ; 63(10): A70-A77, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38568513

RESUMEN

Tungsten oxide (W O 3) has been widely used in hydrogen sensing due to its stable chemical properties and high oxygen vacancy diffusion coefficient. However, the response of pure W O 3 to hydrogen is slow, and doping is an effective way to improve the hydrogen sensing performance of W O 3 materials. In this paper, W O 3/P t/P E G/S i O 2 porous film was prepared by the sol-gel method using tungsten powder, H 2 O 2 and C 2 H 5 O H as precursors, polyethylene glycol (PEG) as the pore-forming agent, and tetraethyl orthosilicate (TEOS) as the S i O 2 source material. The sensing properties of the W O 3 composite for hydrogen were characterized by a transmission optical fiber hydrogen sensing system made at home. The process parameters such as water bath time, aging time, W:PEG ratio, and W:TEOS ratio were optimized to improve the sensitivity and response time of the sensing film. The experimental results indicate that the sensitivity is 15.68%, the average response time is 45 s, and the repeatability is up to 98.74% in 16 consecutive tests. The linearity index R 2 is 0.9946 within the hydrogen concentration range of 5000 ppm to 50,000 ppm. The film responds only to H 2 when the concentration of interfering gases (C H 4, CO, C O 2) is 2000 ppm. The hydrogen sensing performance of the optimized film is significantly improved compared with that of the undoped film.

2.
Appl Opt ; 62(31): 8272-8278, 2023 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-38037929

RESUMEN

This paper presents a hydrogel optical fiber fluorescence pH sensor doped with 5(6)-carboxyfluorescein (5(6)-FAM). The hydrogel optical fiber was fabricated with 2-hydroxy-2-methylpropiophenone as a photoinitiator, with different concentrations of polyethylene glycol diacrylate (PEGDA) for the core and cladding. A pH-sensitive fluorescence indicator 5(6)-FAM was doped into the core of the fiber. The prepared hydrogel optical fiber pH sensor showed good response within the pH range of 5.0-9.0. The linear range of the pH sensor is 6.0 to 8.0, with R 2=0.9904; within this range, the sensor shows good repeatability and reversibility, and the resolution is 0.07 pH units. The pHs of pork tissues soaked in different pH buffers were detected by the hydrogel optical fiber pH sensor; the linearity is 0.9828 when the pork tissue pH is in the range of 6.0-7.5. Due to the good ion permeability and biocompatibility of the hydrogel, this hydrogel optical fiber pH sensor is expected to be used in biomedical applications.

3.
Appl Opt ; 60(31): 9818-9827, 2021 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-34807169

RESUMEN

The phase generated carrier (PGC) algorithm is often used in the demodulation of interference signals in optical fiber sensors for its high sensitivity, good linearity, and large dynamic range. However, the PGC demodulation method is often distorted by the amplitude of the interference signal and the depth of modulation. In this study, the support vector regression (SVR) method is used to compensate the distortion of the PGC demodulation schemes. Simulation results showed that the SVR algorithm can effectively reduce the nonlinear error of the PGC demodulation system. The fitting accuracy of the SVR algorithm is 97.5% and greater than 90% in noiseless and noise systems, which is better than the back propagation (BP) neural network algorithm. Also, the SVR-based algorithm can better restore the amplitude with smaller mean square error and good correlation. A vibration monitoring system has been built, and experiment results confirm that the performance of the SVR-based algorithm is better than direct PGC demodulation and BP algorithm with the mean square error of 0.0005 and relevance of 0.94.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA