Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
1.
Mol Med ; 29(1): 107, 2023 08 09.
Artículo en Inglés | MEDLINE | ID: mdl-37558995

RESUMEN

BACKGROUND: A dysfunction of NADH dehydrogenase, the mitochondrial Complex I (CI), associated with the development of left ventricular hypertrophy (LVH) in previous experimental studies. A deficiency of Ndufc2 (subunit of CI) impairs CI activity causing severe mitochondrial dysfunction. The T allele at NDUFC2/rs11237379 variant associates with reduced gene expression and impaired mitochondrial function. The present study tested the association of both NDUFC2/rs11237379 and NDUFC2/rs641836 variants with LVH in hypertensive patients. In vitro studies explored the impact of reduced Ndufc2 expression in isolated cardiomyocytes. METHODS: Two-hundred-forty-six subjects (147 male, 59.7%), with a mean age of 59 ± 15 years, were included for the genetic association analysis. Ndufc2 silencing was performed in both H9c2 and rat primary cardiomyocytes to explore the hypertrophy development and the underlying signaling pathway. RESULTS: The TT genotype at NDUFC2/rs11237379 associated with significantly reduced gene expression. Multivariate analysis revealed that patients carrying this genotype showed significant differences for septal thickness (p = 0.07), posterior wall thickness (p = 0.008), RWT (p = 0.021), LV mass/BSA (p = 0.03), compared to subjects carrying either CC or CT genotypes. Patients carrying the A allele at NDUFC2/rs641836 showed significant differences for septal thickness (p = 0.017), posterior wall thickness (p = 0.011), LV mass (p = 0.003), LV mass/BSA (p = 0.002) and LV mass/height2.7(p = 0.010) after adjustment for covariates. In-vitro, the Ndufc2 deficiency-dependent mitochondrial dysfunction caused cardiomyocyte hypertrophy, pointing to SIRT3-AMPK-AKT-MnSOD as a major underlying signaling pathway. CONCLUSIONS: We demonstrated for the first time a significant association of NDUFC2 variants with LVH in human hypertension and highlight a key role of Ndufc2 deficiency-dependent CI mitochondrial dysfunction on increased susceptibility to cardiac hypertrophy development.


Asunto(s)
Cardiomegalia , Hipertensión , Humanos , Masculino , Ratas , Animales , Adulto , Persona de Mediana Edad , Anciano , Cardiomegalia/genética , Hipertrofia Ventricular Izquierda/genética , Hipertrofia Ventricular Izquierda/complicaciones , Hipertensión/complicaciones , Hipertensión/genética , Genotipo , Transducción de Señal , Complejo I de Transporte de Electrón/genética
2.
Circ Res ; 132(11): 1489-1504, 2023 05 26.
Artículo en Inglés | MEDLINE | ID: mdl-37144413

RESUMEN

BACKGROUND: Dkk3 (Dickkopf-3) is a secreted glycoprotein known for its proapoptotic and angiogenic activity. The role of Dkk3 in cardiovascular homeostasis is largely unknown. Remarkably, the Dkk3 gene maps within a chromosome segment linked to the hypertensive phenotype in spontaneously hypertensive rats (SHR). METHODS: We used Dkk3-/- mice or stroke-resistant (sr) and stroke-prone (sp) SHR to examine the role of Dkk3 in the central and peripheral regulation of blood pressure (BP). We used lentiviral expression vector to rescue Dkk3 in knockout mice or to induce Dkk3 overexpression or silencing in SHR. RESULTS: Genetic deletion of Dkk3 in mice enhanced BP and impaired endothelium-dependent acetylcholine-induced relaxation of resistance arteries. These alterations were rescued by restoring Dkk3 expression either in the periphery or in the central nervous system (CNS). Dkk3 was required for the constitutive expression of VEGF (vascular endothelium growth factor), and the action of Dkk3 on BP and endothelium-dependent vasorelaxation was mediated by VEGF-stimulated phosphatidylinositol-3-kinase pathway, leading to eNOS (endothelial NO synthase) activation both in resistance arteries and the CNS. The regulatory function of Dkk3 on BP was confirmed in SHR stroke-resistant and SHR stroke-prone in which was blunted in both resistance arteries and brainstem. In SHR stroke-resistant, lentiviral expression vector-induced Dkk3 expression in the CNS largely reduced BP, whereas Dkk3 knock-down further enhanced BP. In SHR stroke-prone challenged with a hypersodic diet, lentiviral expression vector-induced Dkk3 expression in the CNS displayed a substantial antihypertensive effect and delayed the occurrence of stroke. CONCLUSIONS: These findings demonstrate that Dkk3 acts as peripheral and central regulator of BP by promoting VEGF expression and activating a VEGF/Akt (protein kinase B)/eNOS hypotensive axis.


Asunto(s)
Hipertensión , Accidente Cerebrovascular , Animales , Ratones , Ratas , Presión Sanguínea , Endotelio Vascular/metabolismo , Hipertensión/genética , Óxido Nítrico Sintasa de Tipo III/metabolismo , Ratas Endogámicas SHR , Accidente Cerebrovascular/genética , Factor A de Crecimiento Endotelial Vascular , Factores de Crecimiento Endotelial Vascular , Vasodilatación
3.
Cell Mol Life Sci ; 80(5): 134, 2023 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-37099206

RESUMEN

Mitochondrial dysfunction, causing increased reactive oxygen species (ROS) production, is a molecular feature of heart failure (HF). A defective antioxidant response and mitophagic flux were reported in circulating leucocytes of patients with chronic HF and reduced ejection fraction (HFrEF). Atrial natriuretic peptide (ANP) exerts many cardiac beneficial effects, including the ability to protect cardiomyocytes by promoting autophagy. We tested the impact of ANP on autophagy/mitophagy, altered mitochondrial structure and function and increased oxidative stress in HFrEF patients by both ex vivo and in vivo approaches. The ex vivo study included thirteen HFrEF patients whose peripheral blood mononuclear cells (PBMCs) were isolated and treated with αANP (10-11 M) for 4 h. The in vivo study included six HFrEF patients who received sacubitril/valsartan for two months. PBMCs were characterized before and after treatment. Both approaches analyzed mitochondrial structure and functionality. We found that levels of αANP increased upon sacubitril/valsartan, whereas levels of NT-proBNP decreased. Both the ex vivo direct exposure to αANP and the higher αANP level upon in vivo treatment with sacubitril/valsartan caused: (i) improvement of mitochondrial membrane potential; (ii) stimulation of the autophagic process; (iii) significant reduction of mitochondrial mass-index of mitophagy stimulation-and upregulation of mitophagy-related genes; (iv) reduction of mitochondrial damage with increased inner mitochondrial membrane (IMM)/outer mitochondrial membrane (OMM) index and reduced ROS generation. Herein we demonstrate that αANP stimulates both autophagy and mitophagy responses, counteracts mitochondrial dysfunction, and damages ultimately reducing mitochondrial oxidative stress generation in PBMCs from chronic HF patients. These properties were confirmed upon sacubitril/valsartan administration, a pivotal drug in HFrEF treatment.


Asunto(s)
Insuficiencia Cardíaca , Humanos , Insuficiencia Cardíaca/tratamiento farmacológico , Factor Natriurético Atrial , Tetrazoles/farmacología , Tetrazoles/uso terapéutico , Mitofagia , Leucocitos Mononucleares , Especies Reactivas de Oxígeno , Volumen Sistólico , Antagonistas de Receptores de Angiotensina/farmacología , Antagonistas de Receptores de Angiotensina/uso terapéutico , Valsartán/farmacología , Valsartán/uso terapéutico , Mitocondrias
4.
Autophagy ; 19(4): 1087-1099, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-35998113

RESUMEN

NPPA/atrial natriuretic peptide (natriuretic peptide type A) exerts critical pleiotropic effects in the cardiovascular system, limiting cardiomyocyte hypertrophy and death, reducing cardiac fibrosis and promoting vascular integrity. However, the molecular mechanisms underlying these beneficial effects still need to be clarified. We demonstrated for the first time that macroautophagy/autophagy is involved in the local protective effects of NPPA in cardiomyocytes (CMs), both in vitro and in vivo. Exogenous NPPA rapidly activates autophagy in CMs through NPR1/type A natriuretic peptide receptor and PRKG/protein kinase G signaling and also increases cardiac autophagy in mice. Remarkably, endogenous NPPA is secreted by CMs in response to glucose deprivation or hypoxia, thereby stimulating autophagy through autocrine/paracrine mechanisms. NPPA preserves cell viability and reduces hypertrophy in response to stress through autophagy activation. In vivo, we found that Nppa knockout mice undergoing ischemia-reperfusion (I/R) show increased infarct size and reduced autophagy. Reactivation of autophagy by Tat-Beclin D11 limits I/R injury. We also found that the protective effects of NPPA in reducing infarct size are abrogated in the presence of autophagy inhibition. Mechanistically, we found that NPPA stimulates autophagy through the activation of TFEB (transcription factor EB). Our data suggest that NPPA is a novel extracellular regulator of autophagy in the heart.


Asunto(s)
Factor Natriurético Atrial , Autofagia , Ratones , Animales , Miocitos Cardíacos , Hipertrofia , Ratones Noqueados
5.
Pharmacol Res ; 187: 106561, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36410676

RESUMEN

The compromised viability and function of cardiovascular cells are rescued by small molecules of triazole derivatives (Tzs), identified as 3a and 3b, by preventing mitochondrial dysfunction. The oxidative phosphorylation improves the respiratory control rate in the presence of Tzs independently of the substrates that energize the mitochondria. The F1FO-ATPase, the main candidate in mitochondrial permeability transition pore (mPTP) formation, is the biological target of Tzs and hydrophilic F1 domain of the enzyme is depicted as the binding region of Tzs. The protective effect of Tz molecules on isolated mitochondria was corroborated by immortalized cardiomyocytes results. Indeed, mPTP opening was attenuated in response to ionomycin. Consequently, increased mitochondrial roundness and reduction of both length and interconnections between mitochondria. In in-vitro and ex-vivo models of cardiovascular pathologies (i.e., hypoxia-reoxygenation and hypertension) were used to evaluate the Tzs cardioprotective action. Key parameters of porcine aortic endothelial cells (pAECs) oxidative metabolism and cell viability were not affected by Tzs. However, in the presence of either 1 µM 3a or 0.5 µM 3b the impaired cell metabolism of pAECs injured by hypoxia-reoxygenation was restored to control respiratory profile. Moreover, endothelial cells isolated from SHRSP exposed to high-salt treatment rescued the Complex I activity and the endothelial capability to form vessel-like tubes and vascular function in presence of Tzs. As a result, the specific biochemical mechanism of Tzs to block Ca2+-activated F1FO-ATPase protected cell viability and preserved the pAECs bioenergetic metabolism upon hypoxia-reoxygenation injury. Moreover, SHRSP improved vascular dysfunction in response to a high-salt treatment.


Asunto(s)
Enfermedades Cardiovasculares , Proteínas de Transporte de Membrana Mitocondrial , Animales , Porcinos , Adenosina Trifosfatasas/metabolismo , Adenosina Trifosfatasas/farmacología , Poro de Transición de la Permeabilidad Mitocondrial/metabolismo , Enfermedades Cardiovasculares/tratamiento farmacológico , Enfermedades Cardiovasculares/metabolismo , Células Endoteliales/metabolismo , Mitocondrias/metabolismo , Miocitos Cardíacos/metabolismo , Hipoxia/metabolismo
6.
Front Cardiovasc Med ; 9: 921244, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35711349

RESUMEN

Background: Among several potential mechanisms, mitochondrial dysfunction has been proposed to be involved in the pathogenesis of coronary artery disease (CAD). A mitochondrial complex I deficiency severely impairs cardiovascular health and contributes to CAD development. Previous evidence highlighted a key role of NDUFC2, a subunit of complex I, deficiency in the increased occurrence of renal and cerebrovascular damage in an animal model of hypertension, and of juvenile ischemic stroke occurrence in humans. Furthermore, a significant decrease of NDUFC2 mRNA was detected in peripheral blood mononuclear cells from patients experiencing acute coronary syndrome (ACS). The T allele at NDUFC2/rs23117379 variant is known to associate with reduced gene expression and mitochondrial dysfunction. Objective: In the present study we tested the impact of the T/C NDUFC2/rs23117379 variant on occurrence of ACS in a prospective cohort of CAD patients (n = 260). Results: Hypertension, smoking habit, diabetes and hypercholesterolemia were present in a large proportion of patients. Non-ST-elevation myocardial infarction (NSTEMI) represented the most frequent type of ACS (44%, n = 115), followed by ST-elevation myocardial infarction (STEMI) (34%, n = 88) and unstable angina (22%, n = 57). The alleles/genotypes distribution for T/C at NDUFC2/rs23117379 revealed that the TT genotype was associated with a trend toward the development of ACS at an earlier age (TT 61 ± 12, CT 65 ± 12 and CC 66 ± 11 years; p = 0.051 after adjustment for gender, hypertension, smoking habit, diabetes and hypercholesterolemia) and with a significant predictive role for ACS recurrence (hazard ratio [HR]1.671; 95% confidence interval [CI], 1.138-2.472; p = 0.009). Conclusions: Our findings are consistent with a deleterious effect of NDUFC2 deficiency on acute coronary events predisposition and further support a role of the NDUFC2/rs23117379 variant as a genetic cardiovascular risk factor.

7.
Life (Basel) ; 12(5)2022 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-35629388

RESUMEN

The mitochondrial uncoupling protein 2 (UCP2) acts as an anion transporter and as an antioxidant factor able to reduce the reactive oxygen species level. Based on its effects, UCP2 prevents the membrane lipids, proteins, and DNA damage while preserving normal cellular functions. Many variants have been identified within the human UCP2. Some of them were associated with a higher risk of obesity, diabetes and cardiovascular diseases in different populations. UCP2 appears a suitable candidate also for the risk of ischemic stroke. In the current study, we investigated the possible association between few variants of UCP2 (rs659366, rs660339, rs1554995310) and the risk of ischemic stroke in a genetically homogenous cohort of cases and controls selected in Sardinia Island. This population has been previously analysed for other candidate genes. A total of 250 cases of ischemic stroke and 241 controls were enrolled in the study. The allelic/genotypic distribution of the 3 UCP2 variants was characterized and compared among cases and controls. The results of our study confirmed known risk factors for ischemic stroke: age, history of smoking, hypertension, hypercholesterolemia, and atrial fibrillation. No association was found between the 3 UCP2 variants and the risk of ischemic stroke in our Sardinian cohort.

8.
Cell Mol Neurobiol ; 42(3): 545-556, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-32996044

RESUMEN

Stroke is a leading cause of death and disability worldwide. Several mechanisms are involved in the pathogenesis of ischemic stroke (IS). The contributory role of the inflammatory and immunity processes was demonstrated both in vitro and in animal models, and was confirmed in humans. IS evokes an immediate inflammatory response that involves complex cellular and molecular mechanisms. All components of the innate and adaptive immunity systems are involved in several steps of the ischemic cascade. In the early phase, inflammatory and immune mechanisms contribute to the brain tissue damage, whereas, in the late phase, they participate to the tissue repair processes. In particular, damage-associated molecular patterns (DAMPs) appear critical for the promotion of altered blood brain barrier permeability, leukocytes infiltration, tissue edema and brain injury. Conversely, the activation of regulatory T lymphocytes (Tregs) plays protective effects. The identification of specific cellular/molecular elements belonging to the inflammatory and immune responses, contributing to the brain ischemic injury and tissue remodeling, offers the advantage to design adequate therapeutic strategies. In this article, we will present an overview of the knowledge on inflammatory and immunity processes in IS, with a particular focus on the role of DAMPs and leukocytes infiltration. We will discuss evidence obtained in preclinical models of IS and in humans. The main molecular mechanisms useful for the development of novel therapeutic approaches will be highlighted. The translation of experimental findings to the human disease is still a difficult step to pursue. Further investigations are required to fill up the existing gaps.


Asunto(s)
Isquemia Encefálica , Accidente Cerebrovascular Isquémico , Accidente Cerebrovascular , Animales , Isquemia Encefálica/patología , Modelos Animales de Enfermedad , Humanos , Inflamación , Leucocitos , Modelos Animales , Accidente Cerebrovascular/patología
9.
J Hum Hypertens ; 36(1): 40-50, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-33589761

RESUMEN

Isolated systolic hypertension (ISHT) is common in elderly patients, whilst its prevalence and clinical impact in young adults are still debated. We aimed to estimate prevalence and clinical characteristics of ISHT and to evaluate out-of-office BP levels and their correlations with office BP in young adults. A single-center, cross-sectional study was conducted at our Hypertension Unit, by including treated and untreated individuals aged 18-50 years, who consecutively underwent home, clinic and 24 h ambulatory BP assessment. All BP measurements were performed and BP thresholds were set according to European guidelines: normotension (NT), clinic BP <140/<90 mmHg; ISHT, BP ≥140/<90 mmHg; isolated diastolic hypertension (IDHT), BP <140/≥90 mmHg; systolic-diastolic hypertension (SDHT), BP ≥140/≥90 mmHg. European SCORE, vascular and cardiac HMOD were also assessed. From an overall sample of 13,053 records, we selected 2127 young outpatients (44.2% female, age 40.5 ± 7.4 years, BMI 26.7 ± 5.0 kg/m2, clinic BP 141.1 ± 16.1/94.1 ± 11.8 mmHg, 24 h BP 129.0 ± 12.8/82.4 ± 9.8 mmHg), among whom 587 (27.6%) had NT, 391 (18.4%) IDHT, 144 (6.8%) ISHT, and 1005 (47.2%) SDHT. Patients with ISHT were predominantly male (61.1%), younger and with higher BMI compared to other groups. They also showed higher home and 24 h ambulatory SBP levels than those with NT or IDHT (P < 0.001), though similar to those with SDHT. ISHT patients showed significantly higher pulse pressure (PP) levels than other groups, at all BP measurements (P < 0.001 for all comparisons), and significantly higher proportion (65.3%) of patients with ISHT had PP >60 mmHg. European SCORE resulted significantly higher in patients with ISHT (1.6 ± 2.9%) and SDHT (1.5 ± 2.7%) compared to those with IDHT (0.9 ± 1.5%) or NT (0.8 ± 1.9%) (P = 0.017). Though relatively rare, ISHT should be not viewed as a benign condition, being associated with sustained SBP elevation, high European SCORE risk, and vascular HMOD.


Asunto(s)
Monitoreo Ambulatorio de la Presión Arterial , Hipertensión , Adolescente , Adulto , Anciano , Presión Sanguínea/fisiología , Estudios Transversales , Femenino , Humanos , Hipertensión/diagnóstico , Hipertensión/tratamiento farmacológico , Hipertensión/epidemiología , Masculino , Persona de Mediana Edad , Prevalencia , Factores de Riesgo , Adulto Joven
10.
Curr Neuropharmacol ; 20(4): 662-674, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-33882809

RESUMEN

Uncoupling protein 2 (UCP2) is a mitochondrial protein that acts as an anion carrier. It is involved in the regulation of several processes, including mitochondrial membrane potential, generation of reactive oxygen species within the inner mitochondrial membrane and calcium homeostasis. UCP2 expression can be regulated at different levels: genetic (gene variants), transcriptional [by peroxisome proliferator-activated receptors (PPARs) and microRNAs], and post-translational. Experimental evidence indicates that activation of UCP2 expression through the AMPK/PPAR-α axis exerts a protective effect toward renal damage and stroke occurrence in an animal model of ischemic stroke (IS) associated with hypertension. UCP2 plays a key role in heart diseases (myocardial infarction and cardiac hypertrophy) and metabolic disorders (obesity and diabetes). In humans, UCP2 genetic variants (-866G/A and Ala55Val) associate with an increased risk of type 2 diabetes mellitus and IS development. Over the last few years, many agents that modulate UCP2 expression have been identified. Some of them are natural compounds of plant origin, such as Brassica oleracea, curcumin, berberine and resveratrol. Other molecules, currently used in clinical practice, include anti-diabetic (gliptin) and chemotherapeutic (doxorubicin and taxol) drugs. This evidence highlights the relevant role of UCP2 for the treatment of a wide range of diseases, which affect the national health systems of Western countries. We will review current knowledge on the physiological and pathological implications of UCP2 with particular regard to cardiovascular and metabolic disorders and will focus on the available therapeutic approaches affecting UCP2 level for the treatment of human diseases.


Asunto(s)
Diabetes Mellitus Tipo 2 , MicroARNs , Animales , Humanos , Canales Iónicos/genética , Canales Iónicos/metabolismo , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo , Proteína Desacopladora 2/genética
11.
Pflugers Arch ; 474(1): 141-153, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34757454

RESUMEN

Stroke represents a main cause of death and permanent disability worldwide. In the attempt to develop targeted preventive and therapeutic strategies, several efforts were performed over the last decades to identify the specific molecular abnormalities preceding cerebral ischemia and neuronal death. In this regard, mitochondrial dysfunction, autophagy, and intracellular calcium homeostasis appear important contributors to stroke development, as underscored by recent pre-clinical evidence. Intracellular calcium (Ca2+) homeostasis is regulated, among other mechanisms, by the calcium sensor stromal interaction molecule 1 (STIM1) and calcium release-activated calcium modulator (ORAI) members, which mediate the store-operated Ca2+ entry (SOCE). The activity of SOCE is deregulated in animal models of ischemic stroke, leading to ischemic injury exacerbation. We found a different pattern of expression of few SOCE components, dependent from a STIM1 mutation, in cerebral endothelial cells isolated from the stroke-prone spontaneously hypertensive rat (SHRSP), compared to the stroke-resistant (SHRSR) strain, suggesting a potential involvement of this mechanism into the stroke predisposition of SHRSP. In this article, we discuss the relevant role of STIM1 in experimental stroke, as highlighted by the current literature and by our recent experimental findings, and the available evidence in the human disease. We also provide a glance on future perspectives and clinical implications of STIM1.


Asunto(s)
Proteínas de Neoplasias/metabolismo , Accidente Cerebrovascular/metabolismo , Molécula de Interacción Estromal 1/metabolismo , Animales , Calcio/metabolismo , Modelos Animales de Enfermedad , Humanos
12.
Cell Death Dis ; 12(10): 919, 2021 10 08.
Artículo en Inglés | MEDLINE | ID: mdl-34625529

RESUMEN

The mitochondrial uncoupling protein 2 (UCP2) plays a protective function in the vascular disease of both animal models and humans. UCP2 downregulation upon high-salt feeding favors vascular dysfunction in knock-out mice, and accelerates cerebrovascular and renal damage in the stroke-prone spontaneously hypertensive rat. Overexpression of UCP2 counteracts the negative effects of high-salt feeding in both animal models. We tested in vitro the ability of UCP2 to stimulate autophagy and mitophagy as a mechanism mediating its protective effects upon high-salt exposure in endothelial and renal tubular cells. UCP2 silencing reduced autophagy and mitophagy, whereas the opposite was true upon UCP2 overexpression. High-salt exposure increased level of reactive oxygen species (ROS), UCP2, autophagy and autophagic flux in both endothelial and renal tubular cells. In contrast, high-salt was unable to induce autophagy and autophagic flux in UCP2-silenced cells, concomitantly with excessive ROS accumulation. The addition of an autophagy inducer, Tat-Beclin 1, rescued the viability of UCP2-silenced cells even when exposed to high-salt. In summary, UCP2 mediated the interaction between high-salt-induced oxidative stress and autophagy to preserve viability of both endothelial and renal tubular cells. In the presence of excessive ROS accumulation (achieved upon UCP2 silencing and high-salt exposure of silenced cells) autophagy was turned off. In this condition, an exogenous autophagy inducer rescued the cellular damage induced by excess ROS level. Our data confirm the protective role of UCP2 toward high-salt-induced vascular and renal injury, and they underscore the role of autophagy/mitophagy as a mechanism counteracting the high-salt-induced oxidative stress damage.


Asunto(s)
Autofagia , Citoprotección , Especies Reactivas de Oxígeno/metabolismo , Cloruro de Sodio Dietético/efectos adversos , Proteína Desacopladora 2/metabolismo , Animales , Apoptosis/efectos de los fármacos , Autofagia/efectos de los fármacos , Encéfalo/irrigación sanguínea , Encéfalo/patología , Supervivencia Celular/efectos de los fármacos , Células Endoteliales/efectos de los fármacos , Células Endoteliales/metabolismo , Células Epiteliales/metabolismo , Células Epiteliales/patología , Silenciador del Gen , Túbulos Renales Proximales/patología , Mitofagia/efectos de los fármacos , Necrosis , Ratas , Ubiquitina-Proteína Ligasas/metabolismo
13.
Pharmacol Res ; 173: 105875, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34500062

RESUMEN

Cerebrovascular disease, a frequent complication of hypertension, is a major public health issue for which novel therapeutic and preventive approaches are needed. Autophagy activation is emerging as a potential therapeutic and preventive strategy toward stroke. Among usual activators of autophagy, the natural disaccharide trehalose (TRE) has been reported to be beneficial in preclinical models of neurodegenerative diseases, atherosclerosis and myocardial infarction. In this study, we tested for the first time the effects of TRE in the stroke-prone spontaneously hypertensive rat (SHRSP) fed with a high-salt stroke permissive diet (JD). We found that TRE reduced stroke occurrence and renal damage in high salt-fed SHRSP. TRE was also able to decrease systolic blood pressure. Through ex-vivo studies, we assessed the beneficial effect of TRE on the vascular function of high salt-fed SHRSP. At the molecular level, TRE restored brain autophagy and reduced mitochondrial mass, along with the improvement of mitochondrial function. The beneficial effects of TRE were associated with increased nuclear translocation of TFEB, a transcriptional activator of autophagy. Our results suggest that TRE may be considered as a natural compound efficacious for the prevention of hypertension-related target organ damage, with particular regard to stroke and renal damage.


Asunto(s)
Fármacos Neuroprotectores/uso terapéutico , Accidente Cerebrovascular/prevención & control , Trehalosa/uso terapéutico , Animales , Autofagia/efectos de los fármacos , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/metabolismo , Encéfalo/efectos de los fármacos , Encéfalo/metabolismo , Hipertensión/tratamiento farmacológico , Hipertensión/genética , Hipertensión/metabolismo , Masculino , Arterias Mesentéricas/efectos de los fármacos , Arterias Mesentéricas/fisiología , Mitocondrias/efectos de los fármacos , Mitocondrias/ultraestructura , Mitofagia/efectos de los fármacos , NADPH Oxidasas/genética , Fármacos Neuroprotectores/farmacología , Estrés Oxidativo/efectos de los fármacos , Ratas Endogámicas SHR , Sodio en la Dieta/administración & dosificación , Trehalosa/farmacología , Factor de Necrosis Tumoral alfa/genética
14.
Int J Mol Sci ; 22(7)2021 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-33917593

RESUMEN

Alterations in the metabolism of sphingolipids, a class of biologically active molecules in cell membranes with direct effect on vascular homeostasis, are increasingly recognized as important determinant in different vascular disorders. However, it is not clear whether sphingolipids are implicated in the pathogenesis of hypertension-related cerebrovascular and renal damage. In this study, we evaluated the existence of possible abnormalities related to the sphingolipid metabolism in the brain and kidneys of two well validated spontaneously hypertensive rat strains, the stroke-prone (SHRSP) and the stroke-resistant (SHRSR) models, as compared to the normotensive Wistar Kyoto (WKY) rat strain. Our results showed a global alteration in the metabolism of sphingolipids in both cerebral and renal tissues of both hypertensive strains as compared to the normotensive rat. However, few defects, such as reduced expression of enzymes involved in the metabolism/catabolism of sphingosine-1-phosphate and in the de novo biosynthetic pathways, were exclusively detected in the SHRSP. Although further studies are necessary to fully understand the significance of these findings, they suggest that defects in specific lipid molecules and/or their related metabolic pathways may likely contribute to the pathogenesis of hypertensive target organ damage and may eventually serve as future therapeutic targets to reduce the vascular consequences of hypertension.


Asunto(s)
Lesiones Encefálicas/metabolismo , Encéfalo/metabolismo , Hipertensión/metabolismo , Enfermedades Renales/metabolismo , Riñón/metabolismo , Lisofosfolípidos/metabolismo , Esfingosina/análogos & derivados , Animales , Encéfalo/patología , Lesiones Encefálicas/patología , Hipertensión/patología , Riñón/patología , Enfermedades Renales/patología , Ratas , Ratas Endogámicas SHR , Ratas Endogámicas WKY , Esfingosina/metabolismo
15.
Int J Cardiol ; 322: 245-249, 2021 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-32861716

RESUMEN

BACKGROUND: The T2238C variant of the atrial natriuretic peptide (ANP) gene has emerged as a novel risk factor for the incidence of cardiovascular events. However, the impact of this variant on cardiovascular outcome in patients with atrial fibrillation (AF) is unknown. METHODS: We included 557 anticoagulated patients with non-valvular AF randomly selected from the prospective ATHERO-AF cohort. Patients underwent genetic analysis for the T2238C/ANP variant and were grouped as wild type or heterozygous or homozygous for C2238 variant allele. Primary endpoint was a composite of cardiovascular events (CVEs) including cardiovascular death, fatal/non-fatal ischemic stroke and myocardial infarction. Overall, 429 patients carried the TT wild type genotype, 110 patients (19.7%) were heterozygous (T/C) and 18 patients (3.2%) were homozygous (CC). RESULTS: Incidence of CVEs was higher in homozygous patients for C2238 allele at unadjusted analysis (log-rank test, p = 0.042 for additive model, p = 0.043 for recessive model). The multivariable Cox proportional hazards regression analysis confirmed that C2238 ANP allele was associated with CVEs in the additive (p = 0.008) and recessive models (p = 0.005). CONCLUSIONS: Carrier status for the C2238/ANP variant allele is associated with an increased risk of CVEs in anticoagulated AF patients.


Asunto(s)
Fibrilación Atrial , Infarto del Miocardio , Fibrilación Atrial/diagnóstico , Fibrilación Atrial/epidemiología , Fibrilación Atrial/genética , Factor Natriurético Atrial/genética , Estudios de Cohortes , Humanos , Estudios Prospectivos
16.
J Am Heart Assoc ; 9(24): e017000, 2020 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-33317369

RESUMEN

Background The role of microRNAs dysregulation in tobacco cigarette smoking-induced vascular damage still needs to be clarified. We assessed the acute effects of tobacco cigarette smoking on endothelial cell-related circulating microRNAs in healthy subjects. In addition, we investigated the potential role of microRNAs in smoking-dependent endothelial cell damage. Methods and Results A panel of endothelial-related microRNAs was quantified in healthy subjects before and after smoking 1 tobacco cigarette. Serum levels of miR-155 were found to be significantly increased shortly after smoking. We also observed a progressive and significant miR-155 accumulation in culture media of human endothelial cells after 30 minutes and up to 4 hours of cigarette smoke condensate treatment in vitro without evidence of cell death, indicating that miR-155 can be released by endothelial cells in response to smoking stress. Cigarette smoke condensate appeared to enhance oxidative stress and impair cell survival, angiogenesis, and NO metabolism in human endothelial cells. Notably, these effects were abrogated by miR-155 inhibition. We also observed that miR-155 inhibition rescued the deleterious effects of cigarette smoke condensate on endothelial-mediated vascular relaxation and oxidative stress in isolated mouse mesenteric arteries. Finally, we found that exogenous miR-155 overexpression mimics the effects of smoking stress by inducing the upregulation of inflammatory markers, impairing angiogenesis and reducing cell survival. These deleterious effects were associated with downregulation of vascular endothelial growth factor and endothelial NO synthetase. Conclusions Our results suggest that miR-155 dysregulation may contribute to the deleterious vascular effects of tobacco smoking.


Asunto(s)
Fumar Cigarrillos/efectos adversos , Células Endoteliales/metabolismo , MicroARNs/sangre , Nicotiana/efectos adversos , Adulto , Inductores de la Angiogénesis/metabolismo , Animales , Enfermedades Cardiovasculares/etiología , Enfermedades Cardiovasculares/metabolismo , Supervivencia Celular , Regulación hacia Abajo , Células Endoteliales/patología , Femenino , Humanos , Masculino , Arterias Mesentéricas/metabolismo , Arterias Mesentéricas/patología , Ratones , Ratones Endogámicos C57BL , MicroARNs/metabolismo , Modelos Animales , Óxido Nítrico Sintasa de Tipo III/metabolismo , Estrés Oxidativo/fisiología , Regulación hacia Arriba , Factor A de Crecimiento Endotelial Vascular/metabolismo
17.
High Blood Press Cardiovasc Prev ; 27(6): 587-596, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33165768

RESUMEN

INTRODUCTION: Despite hypertension guidelines suggest that the most effective treatment strategy to improve blood pressure (BP) target achievement is to implement the use of combination treatment, monotherapy is still widely used in the clinical practice of hypertension. AIM: To investigate BP control under monotherapy in the setting of real-life. METHODS: We extracted data from a medical database of adult outpatients who were referred to the Hypertension Unit, Sant'Andrea Hospital, Rome (IT), including anthropometric data, CV risk factors and comorbidities, presence or absence of antihypertensive therapy and concomitant medications. Among treated hypertensive patients, we identified only those under single antihypertensive agent (monotherapy). Office BP treatment targets were defined according to 2018 ESC/ESH guidelines as: (a) < 130/80 mmHg in individuals aged 18-65 years; (b) < 140/80 mmHg in those aged > 65 years. RESULTS: From an overall sample of 7797 records we selected 1578 (20.2%) hypertensive outpatients (47.3% female, age 59.5 ± 13.6 years, BMI 26.6 ± 4.4 kg/m2) treated with monotherapies, among whom 30.5% received ACE inhibitors, 37.7% ARBs, 15.8% beta-blockers, 10.6% CCBs, 3.0% diuretics, and 2.0% alpha-blockers. 36.6% of these patients reached the conventional clinic BP goal of < 140/90 mmHg, whilst the 2018 European guidelines BP treatment targets were fulfilled only in 14.0%. In particular, 10.2% patients aged 18-65 years and 20.4% of those aged > 65 years achieved the recommended BP goals. All these proportions results significantly lower than those achieved with dual (18.2%) or triple (22.2%) combination therapy, though higher than those obtained with life-style changes (10.8%). Proportions of patients on monotherapies with normal home and 24-h BP levels were 22.0% and 30.2%, respectively, though only 5.2% and 7.3% of these patients achieved sustained BP control, respectively. Ageing and dyslipidaemia showed significant and independent positive predictive value for the achievement of the recommended BP treatment targets, whereas European SCORE resulted a negative and independent predictor in outpatients treated with monotherapies. CONCLUSIONS: Our data showed a persistent use of monotherapy in the clinical practice, though with unsatisfactory BP control, especially in light of the BP treatment targets suggested by the last hypertension guidelines.


Asunto(s)
Antihipertensivos/uso terapéutico , Presión Sanguínea/efectos de los fármacos , Hipertensión/tratamiento farmacológico , Adolescente , Adulto , Anciano , Antihipertensivos/efectos adversos , Estudios Transversales , Bases de Datos Factuales , Femenino , Humanos , Hipertensión/diagnóstico , Hipertensión/fisiopatología , Masculino , Persona de Mediana Edad , Ciudad de Roma , Resultado del Tratamiento , Adulto Joven
18.
J Clin Med ; 9(7)2020 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-32708758

RESUMEN

The natriuretic peptides (NPs) belong to a family of cardiac hormones that exert relevant protective functions within the cardiovascular system. An increase of both brain and atrial natriuretic peptide levels, particularly of the amino-terminal peptides (NT-proBNP and NT-proANP), represents a marker of cardiovascular damage. A link between increased NP levels and cognitive decline and dementia has been reported in several human studies performed both in general populations and in cohorts of patients affected by cardiovascular diseases (CVDs). In particular, it was reported that the elevation of NP levels in dementia can be both dependent and independent from CVD risk factors. In the first case, it may be expected that, by counteracting early on the cardiovascular risk factor load and the pathological processes leading to increased aminoterminal natriuretic peptide (NT-proNP) level, the risk of dementia could be significantly reduced. In case of a link independent from CVD risk factors, an increased NP level should be considered as a direct marker of neuronal damage. In the context of hypertension, elevated NT-proBNP and mid-regional (MR)-proANP levels behave as markers of brain microcirculatory damage and dysfunction. The available evidence suggests that they could help in identifying those subjects who would benefit most from a timely antihypertensive therapy.

19.
Int J Mol Sci ; 21(12)2020 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-32560241

RESUMEN

The downregulation of uncoupling protein-2 (UCP2) is associated with increased brain and kidney injury in stroke-prone spontaneously hypertensive rats (SHRSP) fed with a Japanese style hypersodic diet (JD). Systemic overexpression of UCP2 reduces organ damage in JD-fed SHRSP. We examined the effect of brain-specific UCP2 overexpression on blood pressure (BP), stroke occurrence and kidney damage in JD-fed SHRSP. Rats received a single i.c.v. injection of a lentiviral vector encoding UCP2 (LV-UCP2), or an empty vector. The brain delivery of LV-UCP2 significantly delayed the occurrence of stroke and kidney damage. The large reduction of proteinuria observed after LV-UCP2 injection was unexpected, because BP levels were unchanged. At the time of stroke, rats treated with LV-UCP2 still showed a large UCP2 upregulation in the striatum, associated with increases in OPA1 and FIS1 protein levels, and reductions in PGC1-α, SOD2, TNFα mRNA levels and NRF2 protein levels. This suggested UCP2 overexpression enhanced mitochondrial fusion and fission and reduced oxidative damage and inflammation in the striatum of JD-fed SHRSP rats. Our data suggest the existence of central mechanisms that may protect against hypertension-induced organ damage independently of BP, and strengthen the suitability of strategies aimed at enhancing UCP2 expression for the treatment of hypertensive damage.


Asunto(s)
Cuerpo Estriado/metabolismo , Hipertensión/terapia , Enfermedades Renales/prevención & control , Accidente Cerebrovascular/prevención & control , Proteína Desacopladora 2/genética , Animales , Vectores Genéticos/administración & dosificación , Hipertensión/inducido químicamente , Hipertensión/complicaciones , Hipertensión/metabolismo , Enfermedades Renales/etiología , Enfermedades Renales/metabolismo , Lentivirus/genética , Masculino , Dinámicas Mitocondriales , Estrés Oxidativo , Ratas , Ratas Endogámicas SHR , Sodio en la Dieta/efectos adversos , Accidente Cerebrovascular/etiología , Accidente Cerebrovascular/metabolismo , Proteína Desacopladora 2/metabolismo
20.
Cell Mol Life Sci ; 77(24): 5121-5130, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-32556416

RESUMEN

The natriuretic peptides (NPs) family, including a class of hormones and their receptors, is largely known for its beneficial effects within the cardiovascular system to preserve regular functions and health. The concentration level of each component of the family is of crucial importance to guarantee a proper control of both systemic and local cardiovascular functions. A fine equilibrium between gene expression, protein secretion and clearance is needed to achieve the final optimal level of NPs. To this aim, the regulation of gene expression and translation plays a key role. In this regard, we know the existence of fine regulatory mechanisms, the so-called epigenetic mechanisms, which target many genes at either the promoter or the 3'UTR region to inhibit or activate their expression. The gene encoding ANP (NPPA) is regulated by histone modifications, DNA methylation, distinct microRNAs and a natural antisense transcript (NPPA-AS1) with consequent implications for both health and disease conditions. Notably, ANP modulates microRNAs on its own. Histone modifications of BNP gene (NPPB) are associated with several cardiomyopathies. The proBNP processing is regulated by miR30-GALNT1/2 axis. Among other components of the NPs family, CORIN, NPRA, NPRC and NEP may undergo epigenetic regulation. A better understanding of the epigenetic control of the NPs family will allow to gain more insights on the pathological basis of common cardiovascular diseases and to identify novel therapeutic targets. The present review article aims to discuss the major achievements obtained so far with studies on the epigenetic modulation of the NPs family.


Asunto(s)
Factor Natriurético Atrial/genética , Enfermedad/genética , Regulación de la Expresión Génica/genética , Péptidos Natriuréticos/genética , Animales , Epigénesis Genética , Humanos , MicroARNs/genética , Procainamida/análogos & derivados , Procesamiento Proteico-Postraduccional/genética , Receptores del Factor Natriurético Atrial
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...