Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Reproduction ; 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-39133154

RESUMEN

Metformin is a hypoglycemic drug, widely used in type-2-diabetes (T2D) patients. In the last years, this drug has been suggested as a treatment for gestational diabetes and recommended to women with PCOS to increase the chances of pregnancy or avoid early miscarriages. However, the exact effects of metformin on the female reproductive tract in general, and on the ovary in particular, are still not completely understood. In this study, we analyzed the effect of metformin on fertility and ovarian physiology in healthy female mice. We found that this drug altered the estrous cycle, early follicular development, serum estradiol and progesterone levels, and ovarian steroidogenic enzyme expression. Moreover, ovarian angiogenesis was lower in metformin treated animals compared with untreated ones, whereas natural or gonadotropin-induced fertilization rates remained unchanged. However, offspring of metformin-treated animals displayed decreased body weight at birth. In this work, we unraveled the main effects of metformin on the ovary, isolated from other conditions such as hyperglycemia and hyperandrogenism, which is essential for a better understanding of metformin's mechanisms of action on reproduction and fertility.

2.
Physiol Rep ; 11(15): e15790, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37568265

RESUMEN

We have demonstrated that oligodeoxynucleotide IMT504 promotes significant improvement in the diabetic condition in diverse animal models. Based on these results, here we evaluated whether these effects observed in vivo could be due to direct effects on ß-cells. We demonstrate by immunofluorescence that IMT504 enters the cell and locates in cytoplasm where it induces GSK-3ß phosphorylation that inactivates this kinase. As GSK-3ß tags Pdx1 for proteasomal degradation, by inactivating GSK-3ß, IMT504 induces an increase in Pdx1 protein levels, demonstrated by Western blotting. Concomitantly, an increase in Ins2 and Pdx1 gene transcription was observed, with no significant increase in insulin content or secretion. Enhanced Pdx1 is promising since it is a key transcription factor for insulin synthesis and is also described as an essential factor for the maintenance ß-cell phenotype and function. Dose-dependent inhibition of H2 O2 -induced apoptosis determined by ELISA as well as decreased expression of Bax was also observed. These results were confirmed in another ß-cell line, beta-TC-6 cells, in which a cytokine mix induced apoptosis that was reversed by IMT504. In addition, an inhibitor of IMT504 entrance into cells abrogated the effect IMT504. Based on these results we conclude that the ß-cell recovery observed in vivo may include direct effects of IMT504 on ß-cells, by maintaining their identity/phenotype and protecting them from oxidative stress and cytokine-induced apoptosis. Thus, this work positions IMT504 as a promising option in the framework of the search of new therapies for type I diabetes treatment.


Asunto(s)
Apoptosis , Oligodesoxirribonucleótidos , Animales , Glucógeno Sintasa Quinasa 3 beta , Oligodesoxirribonucleótidos/farmacología , Insulina/metabolismo , Citocinas/farmacología , Proliferación Celular
3.
Mol Cell Endocrinol ; 575: 111995, 2023 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-37364632

RESUMEN

Female fertility is highly dependent on energy balance. High fat diet (HFD) intake entails a risk of infertility and ovulatory disorders. Considering the increase in the prevalence of overweight and obesity over the last decades, it is crucial to understand the mechanisms involved in overweight-associated infertility. In this study, we evaluated the reproductive performance of female mice fed with a HFD and the effects of metformin administration on ovarian function in these mice. We hypothesized that one of the mechanisms involved in subfertility due to a HFD intake is the alteration of ovarian blood vessel formation. We found that mice fed with HFD had altered estrous cycles and steroidogenesis, increased ovarian fibrosis, fewer pups per litter and require more time to achieve pregnancy. HFD-fed mice also presented dysregulated ovarian angiogenesis and an increase in nuclear DNA damage in ovarian cells. Ovulation rates were lower in these animals, as evidenced both in natural mating and after ovulation induction with gonadotropins. Metformin ameliorated ovarian angiogenesis, improved steroidogenesis, fibrosis, and ovulation, decreased the time to pregnancy and increased litter sizes in HFD-fed mice. We conclude that ovarian angiogenesis is one of the mechanisms detrimentally affected by HFD intake. Since metformin could improve ovarian microvasculature, it may be an interesting strategy to study in women to shed light on new targets for patients with metabolic disturbances.


Asunto(s)
Infertilidad , Metformina , Embarazo , Animales , Femenino , Ratones , Dieta Alta en Grasa/efectos adversos , Sobrepeso , Metformina/farmacología , Fertilidad , Ratones Endogámicos C57BL
4.
Reprod Sci ; 27(2): 503-512, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-32046463

RESUMEN

The aim of this study was to investigate whether the Notch pathway is modulated in response to the downregulation of the Wnt/Β-catenin system in corpora lutea (CLs) from superovulated rats. To this end, we analyzed the effect of in vitro CL Wnt/Β-catenin inhibition on the expression of Notch members and on luteal function. Mechanically isolated rat CLs were cultured with ICG-001, a Wnt/B-catenin inhibitor. In this system, Wnt/B-catenin inhibition reduced progesterone production and decreased StAR protein levels. Besides, Wnt/B-catenin inhibition stimulated the Notch system, evidenced by an increase in Hes1 expression, and promoted the expression of selected Notch family members. At long incubation times, StAR levels and progesterone concentration reached the control values, effects probably mediated by the Notch pathway. These results provide the first evidence of a compensatory mechanism between Wnt/B-catenin signaling and the Notch system, which contributes to the homeostasis of luteal cells.


Asunto(s)
Cuerpo Lúteo/metabolismo , Receptores Notch/metabolismo , Vía de Señalización Wnt , Animales , Ciclina D1/metabolismo , Regulación hacia Abajo , Femenino , Fosfoproteínas/metabolismo , Progesterona/metabolismo , Ratas Sprague-Dawley , Factor de Transcripción HES-1/metabolismo
5.
Mol Cell Endocrinol ; 499: 110591, 2020 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-31546019

RESUMEN

Metformin (MET) is the most widely prescribed hypoglycemic drug in type 2 diabetes and Polycystic Ovary Syndrome. Besides its effects on glucose metabolism, MET exerts beneficial effects on these patients' fertility. However, the exact mechanisms of action of MET on female fertility are still unclear. In this work, we analyzed a possible direct effect of MET on ovarian cells. We found expression of the organic cation transporters OCT1, OCT2 and OCT3, responsible for MET uptake into the cells, in rat granulosa cells and human cumulus cells. Furthermore, MET increased pAMPK and decreased VEGF levels both in vivo and in rat granulosa cells in culture. These last effects were reversed when OCTs were inhibited. Our results suggest that MET acts directly on ovarian cells regulating cell metabolism and VEGF expression. Our findings are relevant to optimize PCOS fertility treatment and to explore ovarian MET actions in other female pathologies.


Asunto(s)
Adenilato Quinasa/metabolismo , Células del Cúmulo/citología , Metformina/administración & dosificación , Factores de Transcripción de Octámeros/metabolismo , Factor A de Crecimiento Endotelial Vascular/metabolismo , Adulto , Animales , Proliferación Celular/efectos de los fármacos , Células del Cúmulo/efectos de los fármacos , Células del Cúmulo/metabolismo , Femenino , Regulación de la Expresión Génica/efectos de los fármacos , Humanos , Metformina/farmacología , Modelos Animales , Fosforilación/efectos de los fármacos , Ratas
6.
PLoS One ; 10(3): e0121421, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25803686

RESUMEN

Several studies have confirmed that the breast tumor microenvironment drives cancer progression and metastatic development. The aim of our research was to investigate the prognostic significance of the breast tumor microenvironment in untreated early breast cancer patients. Therefore, we analyzed the association of the expression of α-SMA, FSP, CD105 and CD146 in CD34-negative spindle-shaped stromal cells, not associated with the vasculature, in primary breast tumors with classical prognostic marker levels, metastatic recurrence, local relapse, disease-free survival, metastasis-free survival and the overall survival of patients. In the same way, we evaluated the association of the amount of intra-tumor stroma, fibroblasts, collagen deposition, lymphocytic infiltration and myxoid changes in these samples with the clinical-pathological data previously described. This study is the first to demonstrate the high CD105 expression in this stromal cell type as a possible independent marker of unfavorable prognosis in early breast cancer patients. Our study suggests that this new finding can be useful prognostic marker in the clinical-pathological routine.


Asunto(s)
Antígenos CD34/metabolismo , Antígenos CD/metabolismo , Biomarcadores de Tumor/metabolismo , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Regulación Neoplásica de la Expresión Génica , Receptores de Superficie Celular/metabolismo , Actinas/metabolismo , Adulto , Anciano , Anciano de 80 o más Años , Neoplasias de la Mama/diagnóstico , Antígeno CD146/metabolismo , Supervivencia sin Enfermedad , Endoglina , Femenino , Humanos , Persona de Mediana Edad , Metástasis de la Neoplasia , Recurrencia , Estudios Retrospectivos , Células del Estroma/metabolismo , Células del Estroma/patología , Microambiente Tumoral
7.
Endocrinology ; 156(4): 1453-63, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25590243

RESUMEN

Polycystic ovary syndrome (PCOS) is a frequent pathology that affects more than 5% of women of reproductive age. Among other heterogeneous symptoms, PCOS is characterized by abnormalities in angiogenesis. Metformin has been introduced in the treatment of PCOS to manage insulin resistance and hyperglycemia. Besides its metabolic effects, metformin has been shown to improve ovulation, pregnancy and live birth rates in PCOS patients. In the present study, we used a dehydroepiandrosterone-induced PCOS rat model to analyze the effect of metformin administration on ovarian angiogenesis. We found that metformin was able to restore the increased levels of vascular endothelial growth factor, angiopoietin (ANGPT)1, and ANGPT1/ANGPT2 ratio and the decreased levels of platelet-derived growth factor B and platelet-derived growth factor D observed in the dehydroepiandrosterone-treated rats. These effects could take place, at least in part, through a decrease in the levels of serum insulin. We also found an improvement in follicular development, with a lower percentage of small follicles and cysts and a higher percentage of antral follicles and corpora lutea after metformin administration. The improvement in ovarian angiogenesis is likely to restore the accumulation of small follicles observed in PCOS rats and to reduce cyst formation, thus improving follicular development and the percentage of corpora lutea. These results open new insights into the study of metformin action not only in glucose metabolism but also in ovarian dysfunction in PCOS women.


Asunto(s)
Moduladores de la Angiogénesis/farmacología , Metformina/farmacología , Neovascularización Patológica/tratamiento farmacológico , Folículo Ovárico/efectos de los fármacos , Síndrome del Ovario Poliquístico/tratamiento farmacológico , Moduladores de la Angiogénesis/uso terapéutico , Angiopoyetina 1/sangre , Angiopoyetina 2/sangre , Animales , Deshidroepiandrosterona , Femenino , Insulina/sangre , Resistencia a la Insulina , Metformina/uso terapéutico , Neovascularización Patológica/sangre , Neovascularización Patológica/fisiopatología , Folículo Ovárico/fisiopatología , Factor de Crecimiento Derivado de Plaquetas/metabolismo , Síndrome del Ovario Poliquístico/sangre , Síndrome del Ovario Poliquístico/fisiopatología , Ratas , Ratas Sprague-Dawley , Factor A de Crecimiento Endotelial Vascular/sangre
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...