Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 91
Filtrar
1.
Br J Haematol ; 2024 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-38736325

RESUMEN

B-cell precursor acute lymphoblastic leukaemia (BCP-ALL) blasts strictly depend on the transport of extra-cellular asparagine (Asn), yielding a rationale for L-asparaginase (ASNase) therapy. However, the carriers used by ALL blasts for Asn transport have not been identified yet. Exploiting RS4;11 cells as BCP-ALL model, we have found that cell Asn is lowered by either silencing or inhibition of the transporters ASCT2 or SNAT5. The inhibitors V-9302 (for ASCT2) and GluγHA (for SNAT5) markedly lower cell proliferation and, when used together, suppress mTOR activity, induce autophagy and cause a severe nutritional stress, leading to a proliferative arrest and a massive cell death in both the ASNase-sensitive RS4;11 cells and the relatively ASNase-insensitive NALM-6 cells. The cytotoxic effect is not prevented by coculturing leukaemic cells with primary mesenchymal stromal cells. Leukaemic blasts of paediatric ALL patients express ASCT2 and SNAT5 at diagnosis and undergo marked cytotoxicity when exposed to the inhibitors. ASCT2 expression is positively correlated with the minimal residual disease at the end of the induction therapy. In conclusion, ASCT2 and SNAT5 are the carriers exploited by ALL cells to transport Asn, and ASCT2 expression is associated with a lower therapeutic response. ASCT2 may thus represent a novel therapeutic target in BCP-ALL.

2.
Food Funct ; 15(9): 5118-5131, 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38682277

RESUMEN

This study investigated the impact of in vivo available colon-mango (poly)phenols on stress-induced impairment of intestinal barrier function. Caco-2/HT29-MTX cells were incubated with six extracts of ileal fluid collected pre- and 4-8 h post-mango consumption before being subjected to inflammatory stress. (Poly)phenols in ileal fluids were analysed by UHPLC-HR-MS. Epithelial barrier function was monitored by measurement of trans-epithelial electrical resistance (TEER) and the production of selected inflammatory markers (interleukin-8 (IL-8) and nitric oxide (NO)) and the major mucin of the mucosal layer (MUC2). Post-mango intake ileal fluids contained principally benzoic acids, hydroxybenzenes and galloyl derivatives. There was a high interindividual variability in the levels of these compounds, which was reflected by the degree of variability in the protective effects of individual ileal extracts on inflammatory changes in the treated cell cultures. The 24 h treatment with non-cytotoxic doses of extracts of 4-8 h post-mango intake ileal fluid significantly reduced the TEER decrease in monolayers treated with the inflammatory cytomix. This effect was not associated with changes in IL-8 expression and secretion or claudine-7 expression. The mango derived-ileal fluid extract (IFE) also mitigated cytomix-dependent nitrite secretion, as a proxy of NO production, and the MUC2 reduction observed upon the inflammatory challenge. These insights shed light on the potential protective effect of mango (poly)phenols on the intestinal barrier exposed to inflammatory conditions.


Asunto(s)
Interleucina-8 , Mucosa Intestinal , Mangifera , Mucina 2 , Humanos , Mangifera/química , Células CACO-2 , Mucosa Intestinal/efectos de los fármacos , Mucosa Intestinal/metabolismo , Interleucina-8/metabolismo , Mucina 2/metabolismo , Células HT29 , Polifenoles/farmacología , Colon/efectos de los fármacos , Colon/metabolismo , Óxido Nítrico/metabolismo , Extractos Vegetales/farmacología , Extractos Vegetales/química , Inflamación/tratamiento farmacológico , Funcion de la Barrera Intestinal
3.
Front Microbiol ; 15: 1349391, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38426063

RESUMEN

Members of the genus Bifidobacterium are among the first microorganisms colonizing the human gut. Among these species, strains of Bifidobacterium breve are known to be commonly transmitted from mother to her newborn, while this species has also been linked with activities supporting human wellbeing. In the current study, an in silico approach, guided by ecology- and phylogenome-based analyses, was employed to identify a representative strain of B. breve to be exploited as a novel health-promoting candidate. The selected strain, i.e., B. breve PRL2012, was found to well represent the genetic content and functional genomic features of the B. breve taxon. We evaluated the ability of PRL2012 to survive in the gastrointestinal tract and to interact with other human gut commensal microbes. When co-cultivated with various human gut commensals, B. breve PRL2012 revealed an enhancement of its metabolic activity coupled with the activation of cellular defense mechanisms to apparently improve its survivability in a simulated ecosystem resembling the human microbiome.

4.
J Nanobiotechnology ; 22(1): 45, 2024 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-38291460

RESUMEN

Amorphous silica nanoparticles (ASNP) are among the nanomaterials that are produced in large quantities. ASNP have been present for a long time in several fast-moving consumer products, several of which imply exposure of the gastrointestinal tract, such as toothpastes, food additives, drug excipients, and carriers. Consolidated use and experimental evidence have consistently pointed to the very low acute toxicity and limited absorption of ASNP. However, slow absorption implies prolonged exposure of the intestinal epithelium to ASNP, with documented effects on intestinal permeability and immune gut homeostasis. These effects could explain the hepatic toxicity observed after oral administration of ASNP in animals. More recently, the role of microbiota in these and other ASNP effects has attracted increasing interest in parallel with the recognition of the role of microbiota in a variety of conditions. Although evidence for nanomaterial effects on microbiota is particularly abundant for materials endowed with bactericidal activities, a growing body of recent experimental data indicates that ASNPs also modify microbiota. The implications of these effects are recounted in this contribution, along with a discussion of the more important open issues and recommendations for future research.


Asunto(s)
Microbioma Gastrointestinal , Nanopartículas , Animales , Humanos , Dióxido de Silicio/toxicidad , Nanopartículas/toxicidad , Mucosa Intestinal
5.
Microb Biotechnol ; 17(2): e14406, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38271233

RESUMEN

Bifidobacteria are commensal microorganisms that typically inhabit the mammalian gut, including that of humans. As they may be vertically transmitted, they commonly colonize the human intestine from the very first day following birth and may persist until adulthood and old age, although generally at a reduced relative abundance and prevalence compared to infancy. The ability of bifidobacteria to persist in the human intestinal environment has been attributed to genes involved in adhesion to epithelial cells and the encoding of complex carbohydrate-degrading enzymes. Recently, a putative mucin-degrading glycosyl hydrolase belonging to the GH136 family and encoded by the perB gene has been implicated in gut persistence of certain bifidobacterial strains. In the current study, to better characterize the function of this gene, a comparative genomic analysis was performed, revealing the presence of perB homologues in just eight bifidobacterial species known to colonize the human gut, including Bifidobacterium bifidum and Bifidobacterium longum subsp. longum strains, or in non-human primates. Mucin-mediated growth and adhesion to human intestinal cells, in addition to a rodent model colonization assay, were performed using B. bifidum PRL2010 as a perB prototype and its isogenic perB-insertion mutant. These results demonstrate that perB inactivation reduces the ability of B. bifidum PRL2010 to grow on and adhere to mucin, as well as to persist in the rodent gut niche. These results corroborate the notion that the perB gene is one of the genetic determinants involved in the persistence of B. bifidum PRL2010 in the human gut.


Asunto(s)
Bifidobacterium bifidum , Animales , Bifidobacterium bifidum/genética , Bifidobacterium/genética , Células Epiteliales/microbiología , Mucinas , Mamíferos
6.
Appl Environ Microbiol ; 90(2): e0201423, 2024 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-38294252

RESUMEN

Bifidobacteria are among the first microbial colonizers of the human gut, being frequently associated with human health-promoting activities. In the current study, an in silico methodology based on an ecological and phylogenomic-driven approach allowed the selection of a Bifidobacterium adolescentis prototype strain, i.e., B. adolescentis PRL2023, which best represents the overall genetic content and functional features of the B. adolescentis taxon. Such features were confirmed by in vitro experiments aimed at evaluating the ability of this strain to survive in the gastrointestinal tract of the host and its ability to interact with human intestinal cells and other microbial gut commensals. In this context, co-cultivation of B. adolescentis PRL2023 and several gut commensals revealed various microbe-microbe interactions and indicated co-metabolism of particular plant-derived glycans, such as xylan.IMPORTANCEThe use of appropriate bacterial strains in experimental research becomes imperative in order to investigate bacterial behavior while mimicking the natural environment. In the current study, through in silico and in vitro methodologies, we were able to identify the most representative strain of the Bifidobacterium adolescentis species. The ability of this strain, B. adolescentis PRL2023, to cope with the environmental challenges imposed by the gastrointestinal tract, together with its ability to switch its carbohydrate metabolism to compete with other gut microorganisms, makes it an ideal choice as a B. adolescentis prototype and a member of the healthy microbiota of adults. This strain possesses a genetic blueprint appropriate for its exploitation as a candidate for next-generation probiotics.


Asunto(s)
Bifidobacterium adolescentis , Microbioma Gastrointestinal , Probióticos , Adulto , Humanos , Bifidobacterium adolescentis/genética , Bifidobacterium adolescentis/metabolismo , Microbioma Gastrointestinal/genética , Bifidobacterium/genética , Bifidobacterium/metabolismo , Filogenia
7.
J Dent Sci ; 18(4): 1630-1637, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37799917

RESUMEN

Background/purpose: Testing of dental materials when in contact with innate immune cells has been so far hindered by the lack of proper in vitro models. Human primary monocyte-derived macrophages (MDMs) would be an excellent option to this aim. However, the inability to detach them from the tissue culture plates contrast the possibility to culture them on biomaterials. The goal of the present work is to present and validate an innovative protocol to obtain MDMs from peripheral blood monocytes, and to reseed them in contact with biomaterials without altering their viability and phenotype. Materials and methods: We differentiated MDMs on ultra-low attachment tissue culture plastics and recovered them with specific detachment solution in order to be reseeded on a secondary substrate. Therefore, using biological assays (RT-PCR, Western blot, and immunofluorescence) we compared their phenotype to MDMs differentiated on standard culture plates. Results: Transferred MDMs keep their differentiated M0 resting state, as well as the ability to be polarized into M1 (pro-inflammatory) or M2 (anti-inflammatory) macrophages. Conclusion: These data provide the dental material research community the unprecedented possibility to investigate the immunomodulatory properties of biomaterials for dental application.

8.
Microbiol Spectr ; : e0219423, 2023 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-37728335

RESUMEN

The human organism is inhabited by trillions of microorganisms, known as microbiota, which are considered to exploit a pivotal role in the regulation of host health and immunity. Recent investigations have suggested a relationship between the composition of the human microbiota and COVID-19 infection, highlighting a possible role of bacterial communities in the modulation of the disease severity. In this study, we performed a shotgun metagenomics analysis to explore and compare the nasopharyngeal microbiota of 38 hospitalized Italian patients with and without COVID-19 infection during the third and fourth pandemic waves. In detail, the metagenomic analysis combined with specific correlation analyses suggested a positive association of several microbial species, such as S. parasanguinis and P. melaninogenica, with the severity of COVID-19 infection. Furthermore, the comparison of the microbiota composition between the nasopharyngeal and their respective fecal samples highlighted an association between these different compartments represented by a sharing of several bacterial species. Additionally, lipidomic and deep-shotgun functional analyses of the fecal samples suggested a metabolic impact of the microbiome on the host's immune response, indicating the presence of key metabolic compounds in COVID-19 patients, such as lipid oxidation end products, potentially related to the inflammatory state. Conversely, the patients without COVID-19 displayed enzymatic patterns associated with the biosynthesis and degradation of specific compounds like lysine (synthesis) and phenylalanine (degradation) that could positively impact disease severity and contribute to modulating COVID-19 infection. IMPORTANCE The human microbiota is reported to play a major role in the regulation of host health and immunity, suggesting a possible impact on the severity of COVID-19 disease. This preliminary study investigated the possible correlation between nasopharyngeal microbiota and COVID-19 infection. In detail, the analysis of the nasopharyngeal microbiota of hospitalized Italian patients with and without COVID-19 infection suggested a positive association of several microbial species with the severity of the disease and highlighted a sharing of several bacteria species with the respective fecal samples. Moreover, the metabolic analyses suggested a possible impact of the microbiome on the host's immune response and the disease severity.

9.
Am J Physiol Cell Physiol ; 325(2): C550-C562, 2023 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-37458433

RESUMEN

SLC38A5/SNAT5 is a system N transporter that can mediate net inward or outward transmembrane fluxes of neutral amino acids coupled with Na+ (symport) and H+ (antiport). Its preferential substrates are not only amino acids with side chains containing amide (glutamine and asparagine) or imidazole (histidine) groups, but also serine, glycine, and alanine are transported by the carrier. Expressed in the pancreas, intestinal tract, brain, liver, bone marrow, and placenta, it is regulated at mRNA and protein levels by mTORC1 and WNT/ß-catenin pathways, and it is sensitive to pH, nutritional stress, inflammation, and hypoxia. SNAT5 expression has been found to be altered in pathological conditions such as chronic inflammatory diseases, gestational complications, chronic metabolic acidosis, and malnutrition. Growing experimental evidence shows that SNAT5 is overexpressed in several types of cancer cells. Moreover, recently published results indicate that SNAT5 expression in stromal cells can support the metabolic exchanges occurring in the tumor microenvironment of asparagine-auxotroph tumors. We review the functional role of the SNAT5 transporter in pathophysiology and propose that, due to its peculiar operational and regulatory features, SNAT5 may play important pro-cancer roles when expressed either in neoplastic or in stromal cells of glutamine-auxotroph tumors.NEW & NOTEWORTHY The transporter SLC38A5/SNAT5 provides net influx or efflux of glutamine, asparagine, and serine. These amino acids are of particular metabolic relevance in several conditions. Changes in transporter expression or activity have been described in selected types of human cancers, where SNAT5 can mediate amino acid exchanges between tumor and stromal cells, thus providing a potential therapeutic target. This is the first review that recapitulates the characteristics and roles of the transporter in physiology and pathology.


Asunto(s)
Sistemas de Transporte de Aminoácidos Neutros , Neoplasias , Embarazo , Femenino , Humanos , Glutamina , Sistemas de Transporte de Aminoácidos Neutros/genética , Sistemas de Transporte de Aminoácidos Neutros/metabolismo , Asparagina , Microambiente Tumoral , Sistemas de Transporte de Aminoácidos , Aminoácidos , Serina , Neoplasias/genética
10.
Nat Commun ; 14(1): 4220, 2023 07 14.
Artículo en Inglés | MEDLINE | ID: mdl-37452041

RESUMEN

Although compositional variation in the gut microbiome during human development has been extensively investigated, strain-resolved dynamic changes remain to be fully uncovered. In the current study, shotgun metagenomic sequencing data of 12,415 fecal microbiomes from healthy individuals are employed for strain-level tracking of gut microbiota members to elucidate its evolving biodiversity across the human life span. This detailed longitudinal meta-analysis reveals host sex-related persistence of strains belonging to common, maternally-inherited species, such as Bifidobacterium bifidum and Bifidobacterium longum subsp. longum. Comparative genome analyses, coupled with experiments including intimate interaction between microbes and human intestinal cells, show that specific bacterial glycosyl hydrolases related to host-glycan metabolism may contribute to more efficient colonization in females compared to males. These findings point to an intriguing ancient sex-specific host-microbe coevolution driving the selective persistence in women of key microbial taxa that may be vertically passed on to the next generation.


Asunto(s)
Microbioma Gastrointestinal , Microbiota , Masculino , Humanos , Femenino , Microbioma Gastrointestinal/genética , Bifidobacterium/genética , Bifidobacterium/metabolismo , Bacterias/genética
11.
Cell Immunol ; 390: 104741, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37356269

RESUMEN

Although clinically effective, the actions of IFNα, either produced endogenously or by therapeutic delivery, remain poorly understood. Emblematic of this research gap is the disparate array of notable side effects that occur in susceptible individuals, such as neuropsychiatric consequences, autoimmune phenomena, and infectious complications. We hypothesised that these complications are driven at least in part by dysregulated cellular metabolism. Male Wistar rats were treated with either 170,000 IU/kg human recombinant IFNα-2a or BSA/saline (0.9% NaCl) three times per week for three weeks. Bone marrow (BM) immune cells were isolated from the excised femurs for glycolytic rate and mitochondrial function assessment using Agilent Seahorse Technology. Frequencies of immune cell populations were assessed by flow cytometry to determine whether leukopoietic changes had occurred in both blood and BM. Plasma levels of lactate and succinate were also determined. BMDMs were metabolically assessed as above, as well as their metabolic response to an antigenic stimulus (iH37Rv). We observed that BM immune cells from IFN-treated rats exhibit a hypermetabolic state (increased basal OCR/GlycoPER) with decreased mitochondrial metabolic respiration and increased non-mitochondrial OCR. Flow cytometry results indicated an increase in immature granulocytes (RP1- SSChi CD45lo) only in the blood, together with increased succinate levels in the plasma. BMDMs from IFN-treated rats retained the hypermetabolic phenotype after differentiation and failed to induce a step-up in glycolysis and mitochondrial respiration after bacterial stimulation. This work provides the first evidence of the effects of IFNα treatment in inducing hypermetabolic immune features that are associated with markers of inflammation, leukopoiesis, and defective responses to bacterial stimulation.


Asunto(s)
Interferón-alfa , Ácido Succínico , Humanos , Masculino , Ratas , Animales , Ácido Succínico/metabolismo , Ratas Wistar , Interferón-alfa/farmacología , Mitocondrias/metabolismo , Succinatos/metabolismo
12.
Biomacromolecules ; 24(6): 2892-2907, 2023 06 12.
Artículo en Inglés | MEDLINE | ID: mdl-37228181

RESUMEN

Oral administration of nanoparticles (NPs) is a promising strategy to overcome solubility and stability issues of many active compounds. However, this route faces major obstacles related to the hostile gastrointestinal (GI) environment, which impairs the efficacy of orally administered nanomedicines. Here, we propose nanocomposites as a promising approach to increase the retention time of NPs in the intestinal tract by using bio- and mucoadhesive matrixes able to protect the cargo until it reaches the targeted area. A microfluidic-based approach has been applied for the production of tailored nanoemulsions (NEs) of about 110 nm, used for the encapsulation of small hydrophobic drugs such as the anti-inflammatory JAK-inhibitor tofacitinib. These NEs proved to be efficiently internalized into a mucus-secreting human intestinal monolayer of Caco-2/HT29-MTX cells and to deliver tofacitinib to subepithelial human THP-1 macrophage-like cells, reducing their inflammatory response. NEs were then successfully encapsulated into alginate hydrogel microbeads of around 300 µm, which were characterized by rheological experiments and dried to create a long-term stable system for pharmaceutical applications. Finally, ex vivo experiments on excised segments of rats' intestine proved the bioadhesive ability of NEs embedded in alginate hydrogels compared to free NEs, showing the advantage that this hybrid system can offer for the treatment of intestinal pathologies.


Asunto(s)
Alginatos , Nanopartículas , Ratas , Humanos , Animales , Alginatos/química , Células CACO-2 , Intestinos , Antiinflamatorios , Administración Oral , Hidrogeles , Nanopartículas/química , Sistemas de Liberación de Medicamentos
13.
Microbiol Spectr ; 11(3): e0066523, 2023 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-37191543

RESUMEN

Multiple millennia of human evolution have shaped the chemical composition of breast milk toward an optimal human body fluid for nutrition and protection and for shaping the early gut microbiota of newborns. This biological fluid is composed of water, lipids, simple and complex carbohydrates, proteins, immunoglobulins, and hormones. Potential interactions between hormones present in mother's milk and the microbial community of the newborn are a very fascinating yet unexplored topic. In this context, insulin, in addition to being one of the most prevalent hormones in breast milk, is also involved in a metabolic disease that affects many pregnant women, i.e., gestational diabetes mellitus (GDM). Analysis of 3,620 publicly available metagenomic data sets revealed that the bifidobacterial community varies in relation to the different concentrations of this hormone in breast milk of healthy and diabetic mothers. Starting from this assumption, in this study, we explored possible molecular interactions between this hormone and bifidobacterial strains that represent bifidobacterial species commonly occurring in the infant gut using 'omics' approaches. Our findings revealed that insulin modulates the bifidobacterial community by apparently improving the persistence of the Bifidobacterium bifidum taxon in the infant gut environment compared to other typical infant-associated bifidobacterial species. IMPORTANCE Breast milk is a key factor in modulating the infant's intestinal microbiota composition. Even though the interaction between human milk sugars and bifidobacteria has been extensively studied, there are other bioactive compounds in human milk that may influence the gut microbiota, such as hormones. In this article, the molecular interaction of the human milk hormone insulin and the bifidobacterial communities colonizing the human gut in the early stages of life has been explored. This molecular cross talk was assessed using an in vitro gut microbiota model and then analyzed by various omics approaches, allowing the identification of genes associated with bacterial cell adaptation/colonization in the human intestine. Our findings provide insights into the manner by which assembly of the early gut microbiota may be regulated by host factors such as hormones carried by human milk.


Asunto(s)
Microbioma Gastrointestinal , Microbiota , Lactante , Humanos , Recién Nacido , Femenino , Embarazo , Leche Humana/metabolismo , Leche Humana/microbiología , Bifidobacterium/genética , Bifidobacterium/metabolismo , Insulina/metabolismo , Heces/microbiología
14.
Front Microbiol ; 14: 1130592, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36846784

RESUMEN

Bifidobacteria are extensively exploited for the formulation of probiotic food supplements due to their claimed ability to exert health-beneficial effects upon their host. However, most commercialized probiotics are tested and selected for their safety features rather than for their effective abilities to interact with the host and/or other intestinal microbial players. In this study, we applied an ecological and phylogenomic-driven selection to identify novel B. longum subsp. longum strains with a presumed high fitness in the human gut. Such analyses allowed the identification of a prototype microorganism to investigate the genetic traits encompassed by the autochthonous bifidobacterial human gut communities. B. longum subsp. longum PRL2022 was selected due to its close genomic relationship with the calculated model representative of the adult human-gut associated B. longum subsp. longum taxon. The interactomic features of PRL2022 with the human host as well as with key representative intestinal microbial members were assayed using in vitro models, revealing how this bifidobacterial gut strain is able to establish extensive cross-talk with both the host and other microbial residents of the human intestine.

15.
Environ Microbiol ; 24(12): 5825-5839, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36123315

RESUMEN

The genomic era has resulted in the generation of a massive amount of genetic data concerning the genomic diversity of bacterial taxa. As a result, the microbiological community is increasingly looking for ways to define reference bacterial strains to perform experiments that are representative of the entire bacterial species. Despite this, there is currently no established approach allowing a reliable identification of reference strains based on a comprehensive genomic, ecological, and functional context. In the current study, we developed a comprehensive multi-omics approach that will allow the identification of the optimal reference strains using the Bifidobacterium genus as test case. Strain tracking analysis based on 1664 shotgun metagenomics datasets of healthy infant faecal samples were employed to identify bifidobacterial strains suitable for in silico and in vitro analyses. Subsequently, an ad hoc bioinformatic tool was developed to screen local strain collections for the most suitable species-representative strain alternative. The here presented approach was validated using in vitro trials followed by metagenomics and metatranscriptomics analyses. Altogether, these results demonstrated the validity of the proposed model for reference strain selection, thus allowing improved in silico and in vitro investigations both in terms of cross-laboratory reproducibility and relevance of research findings.


Asunto(s)
Bifidobacterium , Multiómica , Humanos , Lactante , Bifidobacterium/genética , Reproducibilidad de los Resultados , Heces/microbiología , Metagenómica , Bacterias
16.
Nanomaterials (Basel) ; 12(13)2022 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-35808143

RESUMEN

Amorphous silica nanoparticles (ASNP) are present in a variety of products and their biological effects are actively investigated. Although several studies have documented pro-inflammatory effects of ASNP, the possibility that they also modify the response of innate immunity cells to natural activators has not been thoroughly investigated. Here, we study the effects of pyrogenic ASNP on the LPS-dependent activation of human macrophages differentiated from peripheral blood monocytes. In macrophages, 24 h of pre-exposure to non-cytotoxic doses of ASNP markedly inhibited the LPS-dependent induction of pro-inflammatory (TNFα, IL-6) and anti-inflammatory cytokines (IL-10). The inhibitory effect was associated with the suppression of NFκB activation and the increased intracellular sequestration of the TLR4 receptor. The late induction of glutamine synthetase (GS) by LPS was also prevented by pre-exposure to ASNP, while GS silencing did not interfere with cytokine secretion. It is concluded that (i) macrophages exposed to ASNP are less sensitive to LPS-dependent activation and (ii) GS induction by LPS is likely secondary to the stimulation of cytokine secretion. The observed interference with LPS effects may point to a dampening of the acute inflammatory response after exposure to ASNP in humans.

17.
Biomedicines ; 10(3)2022 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-35327420

RESUMEN

BACKGROUND: Clinical and experimental evidence point to a dysregulated immune response caused by SARS-CoV-2 as the primary mechanism of lung disease in COVID-19. However, the pathogenic mechanisms underlying COVID-19-associated ARDS (Acute Respiratory Distress Syndrome) remain incompletely understood. This study aims to explore the inflammatory responses of alveolar epithelial cells to either the spike S1 protein or to a mixture of cytokines secreted by S1-activated macrophages. METHODS AND RESULTS: The exposure of alveolar A549 cells to supernatants from spike-activated macrophages caused a further release of inflammatory mediators, with IL-8 reaching massive concentrations. The investigation of the molecular pathways indicated that NF-kB is involved in the transcription of IP-10 and RANTES, while STATs drive the expression of all the cytokines/chemokines tested, with the exception of IL-8 which is regulated by AP-1. Cytokines/chemokines produced by spike-activated macrophages are also likely responsible for the observed dysfunction of barrier integrity in Human Alveolar Epithelial Lentivirus-immortalized cells (hAELVi), as demonstrated by an increased permeability of the monolayers to mannitol, a marked decrease of TEER and a disorganization of claudin-7 distribution. CONCLUSION: Upon exposure to supernatants from S1-activated macrophages, A549 cells act both as targets and sources of cytokines/chemokines, suggesting that alveolar epithelium along with activated macrophages may orchestrate lung inflammation and contribute to alveolar injury, a hallmark of ARDS.

18.
Hum Mol Genet ; 31(16): 2738-2750, 2022 08 23.
Artículo en Inglés | MEDLINE | ID: mdl-35348691

RESUMEN

Mutations in the X-linked cyclin-dependent kinase-like 5 (CDKL5) cause CDKL5 deficiency disorder (CDD), a neurodevelopmental disease characterized by severe infantile seizures and intellectual disability. The absence of CDKL5 in mice causes defective spine maturation that can at least partially explain the cognitive impairment in CDKL5 patients and CDD mouse models. The molecular basis for such defect may depend on the capacity of CDKL5 to regulate microtubule (MT) dynamics through its association with the MT-plus end tracking protein CLIP170 (cytoplasmic linker protein 170). Indeed, we here demonstrate that the absence of CDKL5 causes CLIP170 to be mainly in a closed inactive conformation that impedes its binding to MTs. Previously, the synthetic pregnenolone analogue, pregnenolone-methyl-ether (PME), was found to have a positive effect on CDKL5-related cellular and neuronal defects in vitro. Here, we show that PME induces the open active conformation of CLIP170 and promotes the entry of MTs into dendritic spines in vitro. Furthermore, the administration of PME to symptomatic Cdkl5-knock-out mice improved hippocampal-dependent behavior and restored spine maturation and the localization of MT-related proteins in the synaptic compartment. The positive effect on cognitive deficits persisted for 1 week after treatment withdrawal. Altogether, our results suggest that CDKL5 regulates spine maturation and cognitive processes through its control of CLIP170 and MT dynamics, which may represent a novel target for the development of disease-modifying therapies.


Asunto(s)
Síndromes Epilépticos , Proteínas Asociadas a Microtúbulos , Proteínas de Neoplasias , Pregnenolona , Animales , Síndromes Epilépticos/genética , Éteres/metabolismo , Hipocampo/metabolismo , Ratones , Proteínas Asociadas a Microtúbulos/genética , Microtúbulos/metabolismo , Proteínas de Neoplasias/genética , Pregnenolona/farmacología , Proteínas Serina-Treonina Quinasas/genética
19.
J Neuroendocrinol ; 34(2): e13033, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34495563

RESUMEN

Pregnenolone methyl-ether (PME) is a synthetic derivative of the endogenous neuroactive steroid pregnenolone (PREG), which is an important modulator of several brain functions. In addition to being the precursor of steroids, PREG acts directly on various targets including microtubules (MTs), the functioning of which is fundamental for the development and homeostasis of nervous system. The coordination of MT dynamics is supported by a plethora of MT-associated proteins (MAPs) and by a specific MT code that is defined by the post-translational modifications of tubulin. Defects associated with MAPs or tubulin post-translational modifications are linked to different neurological pathologies including mood and neurodevelopmental disorders. In this review, we describe the beneficial effect of PME in major depressive disorders (MDDs) and in CDKL5 deficiency disorder (CDD), two pathologies that are joint by defective MT dynamics. Growing evidence indeed suggests that PME, as well as PREG, is able to positively affect the MT-binding of MAP2 and the plus-end tracking protein CLIP170 that are both found to be deregulated in the above mentioned pathologies. Furthermore, PME influences the state of MT acetylation, the deregulation of which is often associated with neurological abnormalities including MDDs. By contrast to PREG, PME is not metabolised into other downstream molecules with specific biological properties, an aspect that makes this compound more suitable for therapeutic strategies. Thus, through the analysis of MDDs and CDD, this work focuses attention on the possible use of PME for neuronal pathologies associated with MT defects.


Asunto(s)
Trastorno Depresivo Mayor , Éteres Metílicos , Síndromes Epilépticos , Humanos , Éteres Metílicos/metabolismo , Éteres Metílicos/farmacología , Proteínas Asociadas a Microtúbulos/metabolismo , Proteínas Asociadas a Microtúbulos/farmacología , Microtúbulos/metabolismo , Pregnenolona/metabolismo , Pregnenolona/uso terapéutico , Proteínas Serina-Treonina Quinasas , Espasmos Infantiles , Tubulina (Proteína)/metabolismo , Tubulina (Proteína)/farmacología
20.
Int J Mol Sci ; 24(1)2022 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-36613509

RESUMEN

CDKL5 deficiency disorder (CDD) is an X-linked neurodevelopmental disorder characterised by early-onset drug-resistant epilepsy and impaired cognitive and motor skills. CDD is caused by mutations in cyclin-dependent kinase-like 5 (CDKL5), which plays a well-known role in regulating excitatory neurotransmission, while its effect on neuronal inhibition has been poorly investigated. We explored the potential role of CDKL5 in the inhibitory compartment in Cdkl5-KO male mice and primary hippocampal neurons and found that CDKL5 interacts with gephyrin and collybistin, two crucial organisers of the inhibitory postsynaptic sites. Through molecular and electrophysiological approaches, we demonstrated that CDKL5 loss causes a reduced number of gephyrin puncta and surface exposed γ2 subunit-containing GABAA receptors, impacting the frequency of miniature inhibitory postsynaptic currents, which we ascribe to a postsynaptic function of CDKL5. In line with previous data showing that CDKL5 loss impacts microtubule (MT) dynamics, we showed that treatment with pregnenolone-methyl-ether (PME), which promotes MT dynamics, rescues the above defects. The impact of CDKL5 deficiency on inhibitory neurotransmission might explain the presence of drug-resistant epilepsy and cognitive defects in CDD patients. Moreover, our results may pave the way for drug-based therapies that could bypass the need for CDKL5 and provide effective therapeutic strategies for CDD patients.


Asunto(s)
Neuroesteroides , Espasmos Infantiles , Masculino , Ratones , Animales , Neuroesteroides/uso terapéutico , Pregnenolona/farmacología , Espasmos Infantiles/genética , Éteres , Ratones Noqueados , Proteínas Serina-Treonina Quinasas/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...