Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Neurobiol Dis ; 182: 106126, 2023 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-37086756

RESUMEN

Intraneuronal aggregates of the microtubule binding protein Tau are a hallmark of different neurodegenerative diseases including Alzheimer's disease (AD). In these aggregates, Tau is modified by posttranslational modifications such as phosphorylation as well as by proteolytic cleavage. Here we identify a novel Tau cleavage site at aspartate 65 (D65) that is specific for caspase-2. In addition, we show that the previously described cleavage site at D421 is also efficiently processed by caspase-2, and both sites are cleaved in human brain samples. Caspase-2-generated Tau fragments show increased aggregation potential in vitro, but do not accumulate in vivo after AAV-mediated overexpression in mouse hippocampus. Interestingly, we observe that steady-state protein levels of caspase-2 generated Tau fragments are low in our in vivo model despite strong RNA expression, suggesting efficient clearance. Consistent with this hypothesis, we find that caspase-2 cleavage significantly improves the recognition of Tau by the ubiquitin E3 ligase CHIP, leading to increased ubiquitination and faster degradation of Tau fragments. Taken together our data thus suggest that CHIP-induced ubiquitination is of particular importance for the clearance of caspase-2 generated Tau fragments in vitro and in vivo.


Asunto(s)
Caspasa 2 , Proteínas tau , Humanos , Masculino , Femenino , Animales , Ratones , Modelos Animales de Enfermedad , Proteínas tau/química , Proteínas tau/genética , Proteínas tau/metabolismo , Caspasa 2/metabolismo , Encéfalo/metabolismo , Inmunoprecipitación de Cromatina , Ubiquitinación
2.
Mol Neurodegener ; 16(1): 46, 2021 07 02.
Artículo en Inglés | MEDLINE | ID: mdl-34215303

RESUMEN

BACKGROUND: Human tauopathies including Alzheimer's disease (AD) are characterized by alterations in the post-translational modification (PTM) pattern of Tau, which parallel the formation of insoluble Tau aggregates, neuronal dysfunction and degeneration. While PTMs on aggregated Tau have been studied in detail, much less is known about the modification patterns of soluble Tau. Furthermore, PTMs other than phosphorylation have only come into focus recently and are still understudied. Soluble Tau species are likely responsible for the spreading of pathology during disease progression and are currently being investigated as targets for immunotherapies. A better understanding of their biochemical properties is thus of high importance. METHODS: We used a mass spectrometry approach to characterize Tau PTMs on a detergent-soluble fraction of human AD and control brain tissue, which led to the discovery of novel lysine methylation events. We developed specific antibodies against Tau methylated at these sites and biochemically characterized methylated Tau species in extracts from human brain, the rTg4510 mouse model and in hiPSC-derived neurons. RESULTS: Our study demonstrates that methylated Tau levels increase with Tau pathology stage in human AD samples as well as in a mouse model of Tauopathy. Methylated Tau is enriched in soluble brain extracts and is not associated with hyperphosphorylated, high molecular weight Tau species. We also show that in hiPSC-derived neurons and mouse brain, methylated Tau preferentially localizes to the cell soma and nuclear fractions and is absent from neurites. Knock down and inhibitor studies supported by proteomics data led to the identification of SETD7 as a novel lysine methyltransferase for Tau. SETD7 specifically methylates Tau at K132, an event that facilitates subsequent methylation at K130. CONCLUSIONS: Our findings indicate that methylated Tau has a specific somatic and nuclear localization, suggesting that the methylation of soluble Tau species may provide a signal for their translocation to different subcellular compartments. Since the mislocalization and depletion of Tau from axons is associated with tauopathies, our findings may shed light onto this disease-associated phenomenon.


Asunto(s)
Enfermedad de Alzheimer/metabolismo , N-Metiltransferasa de Histona-Lisina/metabolismo , Procesamiento Proteico-Postraduccional/fisiología , Proteínas tau/metabolismo , Animales , Humanos , Lisina/metabolismo , Metilación , Ratones , Ratones Transgénicos
3.
Neurobiol Dis ; 130: 104518, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31229689

RESUMEN

Tau cleavage by different proteolytic enzymes generates short, aggregation-prone fragments that have been implicated in the pathogenesis of Alzheimer's disease (AD). Asparagine endopeptidase (AEP) activity in particular has been associated with tau dysfunction and aggregation, and the activity of the protease is increased in both aging and AD. Using a mass spectrometry approach, we identified a novel tau cleavage site at N167 and confirmed its processing by AEP. In combination with the previously known site at N368, we show that AEP cleavage yields a tau fragment that is present in both control and AD brains at similar levels. AEP is a lysosomal enzyme, and our data suggest that it is expressed in microglia rather than in neurons. Accordingly, we observe tau cleavage at N167 and N368 after endocytotic uptake into microglia, but not neurons. However, tau168-368 does not accumulate in microglia and we thus conclude that the fragment is part of a proteolytic cascade leading to tau degradation. While we confirm previous studies showing increased overall AEP activity in AD brains, our data suggests that AEP-mediated cleavage of tau is a physiological event occurring during microglial degradation of the secreted neuronal protein. As a consequence, we caution against preventing AEP-mediated tau cleavage as a therapeutic approach in AD.


Asunto(s)
Encéfalo/metabolismo , Cisteína Endopeptidasas/metabolismo , Microglía/fisiología , Proteínas tau/metabolismo , Células HEK293 , Humanos , Espectrometría de Masas , Neuronas/fisiología , Proteolisis
4.
Mol Neurodegener ; 12(1): 87, 2017 11 21.
Artículo en Inglés | MEDLINE | ID: mdl-29157277

RESUMEN

BACKGROUND: Tau is a microtubule-binding protein, which is subject to various post-translational modifications (PTMs) including phosphorylation, methylation, acetylation, glycosylation, nitration, sumoylation and truncation. Aberrant PTMs such as hyperphosphorylation result in tau aggregation and the formation of neurofibrillary tangles, which are a hallmark of Alzheimer's disease (AD). In order to study the importance of PTMs on tau function, antibodies raised against specific modification sites are widely used. However, quality control of these antibodies is lacking and their specificity for particular modifications is often unclear. METHODS: In this study, we first designed an online tool called 'TauPTM', which enables the visualization of PTMs and their interactions on human tau. Using TauPTM, we next searched for commercially available antibodies against tau PTMs and characterized their specificity by peptide array, immunoblotting, electrochemiluminescence ELISA and immunofluorescence technologies. RESULTS: We demonstrate that commercially available antibodies can show a significant lack of specificity, and PTM-specific antibodies in particular often recognize non-modified versions of the protein. In addition, detection may be hindered by other PTMs in close vicinity, complicating the interpretation of results. Finally, we compiled a panel of specific antibodies and show that they are useful to detect PTM-modified endogenous tau in hiPSC-derived neurons and mouse brains. CONCLUSION: This study has created a platform to reliably and robustly detect changes in localization and abundance of post-translationally modified tau in health and disease. A web-based version of TauPTM is fully available at http://www.tauptm.org .


Asunto(s)
Procesamiento Proteico-Postraduccional , Proteínas tau/inmunología , Proteínas tau/metabolismo , Acetilación , Animales , Especificidad de Anticuerpos , Encéfalo/metabolismo , Humanos , Metilación , Ratones , Ratones Transgénicos , Fosforilación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...