Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Huan Jing Ke Xue ; 43(9): 4458-4466, 2022 Sep 08.
Artículo en Chino | MEDLINE | ID: mdl-36096586

RESUMEN

In order to explore the pollution characteristics and potential sources of polycyclic aromatic hydrocarbons (PAHs) in the polluted air of a port area, PM2.5 samples (n=59) were collected from Qingdao Port for four seasons from August 2018 to May 2019. The seasonal variation and composition characteristics of PM2.5-bound PAHs were analyzed, the influence of meteorological factors on PAH concentrations was explored using correlation analysis, and the potential sources were analyzed using positive definite matrix factorization and potential source contribution function models. The results showed that the total mean concentration of PAHs was (8.11±12.31) ng·m-3, which was higher in autumn and winter than that in spring and summer. The seasonal molecular compositions of PAHs were similar, dominated by 4-5 ring PAHs (75.43%). Fluoranthene, benzo[e]pyrene, benzo[a]anthracene, phenanthrene, pyrene, and chrysene were the dominant species of PAHs in the study area, which are similar to the major compounds in ship exhaust. Correlation analysis showed that PAH concentrations were significantly negatively correlated with temperature and relative humidity and significantly positively correlated with atmospheric pressure and wind direction and had a poor correlation with wind speed. PMF analysis extracted six contribution factors, and the results indicated that Qingdao Port was mainly influenced by shipping emissions (28.83%), followed by vehicle emissions (20.49%), as well as crude oil volatilization (13.47%). Summer had the greatest impact on shipping emissions. The PSCF results suggested that Beijing-Tianjin-Hebei, Bohai Rim, and northern Shandong were the main source regions for long-range transport.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Hidrocarburos Policíclicos Aromáticos , Contaminantes Atmosféricos/análisis , Contaminación del Aire/análisis , Material Particulado/análisis , Hidrocarburos Policíclicos Aromáticos/análisis , Emisiones de Vehículos/análisis
2.
Huan Jing Ke Xue ; 40(9): 3868-3874, 2019 Sep 08.
Artículo en Chino | MEDLINE | ID: mdl-31854848

RESUMEN

In order to study the seasonal variations in the chemical composition of atmospheric particulate matter with diameters less than 2.5 µm (PM2.5) and its influence on visibility in background areas, atmospheric PM2.5 samples were collected in spring, summer, autumn, and winter 2016 at Qixingtai in Ji'nan. The pollution characteristics of water-soluble ions components, organic carbon (OC), and elemental carbon (EC) were analyzed, and their regional transmission contributions were studied. The results show that NH4+, SO42-, and NO3- were the main components of water-soluble ions, accounting for 90.24% of the annual total ion concentration. The secondary water soluble inorganic ions were polluted severely. NO3-/SO42- presented obvious seasonal variations of high (low) levels in winter (summer). In each season, SO42- and NH4+ existed mainly in the form of (NH4)2SO4. The value of secondary OC (SOC)/OC ranged from 21.17% to 54.21%, indicating the presence of relatively severe secondary organic pollution in this area. The sulfur oxidation ratio (SOR) value in all seasons was greater than 0.1, indicating that the secondary generation of SO42- occurs in all seasons in this region, and the value of nitrogen oxidation ratio (NOR) in all seasons was higher than the SOR value. The secondary transformation of NO2 in the Qixingtai region was stronger than that of SO2. The range of atmospheric extinction coefficient (Bext) was 172.68-320.61 Mm-1, with an annual mean of 256.48 Mm-1. The atmospheric extinction coefficient showed an obvious seasonal trend of the lowest (highest) in summer (winter). The backward airflow trajectory shows that the Qixingtai was affected mainly by the long-distance transmission from Northwest China and the ocean in spring and summer and by local sources in autumn and winter. A comparison of the characteristics of atmospheric PM2.5 pollution in Ji'nan in 2008 revealed that the influence of motor vehicles on the atmospheric environment has been significantly improved.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...