Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Plant Cell Physiol ; 60(2): 255-273, 2019 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-30668780

RESUMEN

Abiotic stress poses constant challenges for plant survival and is a serious problem for global agricultural productivity. On a molecular level, stress conditions result in elevation of reactive oxygen species (ROS) production causing oxidative stress associated with oxidation of proteins and nucleic acids as well as impairment of membrane functions. Adaptation of root growth to ROS accumulation is facilitated through modification of auxin and cytokinin hormone homeostasis. Here, we report that in Arabidopsis root meristem, ROS-induced changes of auxin levels correspond to decreased abundance of PIN auxin efflux carriers at the plasma membrane (PM). Specifically, increase in H2O2 levels affects PIN2 endocytic recycling. We show that the PIN2 intracellular trafficking during adaptation to oxidative stress requires the function of the ADP-ribosylation factor (ARF)-guanine-nucleotide exchange factor (GEF) BEN1, an actin-associated regulator of the trafficking from the PM to early endosomes and, presumably, indirectly, trafficking to the vacuoles. We propose that H2O2 levels affect the actin dynamics thus modulating ARF-GEF-dependent trafficking of PIN2. This mechanism provides a way how root growth acclimates to stress and adapts to a changing environment.


Asunto(s)
Oxidorreductasas de Alcohol/metabolismo , Proteínas de Arabidopsis/metabolismo , Peróxido de Hidrógeno/metabolismo , Estrés Oxidativo , Raíces de Plantas/metabolismo , Factores de Ribosilacion-ADP/metabolismo , Factores de Ribosilacion-ADP/fisiología , Actinas/metabolismo , Adaptación Fisiológica , Oxidorreductasas de Alcohol/fisiología , Arabidopsis/metabolismo , Arabidopsis/fisiología , Proteínas de Arabidopsis/fisiología , Citoesqueleto/metabolismo , Factores de Intercambio de Guanina Nucleótido/metabolismo , Factores de Intercambio de Guanina Nucleótido/fisiología , Raíces de Plantas/fisiología , Especies Reactivas de Oxígeno/metabolismo
2.
Plant Cell Environ ; 40(11): 2586-2605, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-28708264

RESUMEN

To maintain the activity of meristems is an absolute requirement for plant growth and development, and the role of the plant hormones auxin and cytokinin in apical meristem function is well established. Only little attention has been given, however, to the function of the reactive oxygen species (ROS) gradient along meristematic tissues and its interplay with hormonal regulatory networks. The interdependency between auxin-related, cytokinin-related and ROS-related circuits controls primary growth and development while modulating plant morphology in response to detrimental environmental factors. Because ROS interaction with redox-active compounds significantly affects the cellular redox gradient, the latter constitutes an interface for crosstalk between hormone and ROS signalling pathways. This review focuses on the mechanisms underlying ROS-dependent interactions with redox and hormonal components in shoot and root apical meristems which are crucial for meristems maintenance when plants are exposed to environmental hardships. We also emphasize the importance of cell type and the subcellular compartmentalization of ROS and redox networks to obtain a holistic understanding of how apical meristems adapt to stress.


Asunto(s)
Citocininas/metabolismo , Ácidos Indolacéticos/metabolismo , Desarrollo de la Planta , Especies Reactivas de Oxígeno/metabolismo , Homeostasis , Oxidación-Reducción
3.
Int J Mol Sci ; 18(7)2017 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-28677656

RESUMEN

Plant growth and development are critically influenced by unpredictable abiotic factors. To survive fluctuating changes in their environments, plants have had to develop robust adaptive mechanisms. The dynamic and complementary actions of the auxin and cytokinin pathways regulate a plethora of developmental processes, and their ability to crosstalk makes them ideal candidates for mediating stress-adaptation responses. Other crucial signaling molecules responsible for the tremendous plasticity observed in plant morphology and in response to abiotic stress are reactive oxygen species (ROS). Proper temporal and spatial distribution of ROS and hormone gradients is crucial for plant survival in response to unfavorable environments. In this regard, the convergence of ROS with phytohormone pathways acts as an integrator of external and developmental signals into systemic responses organized to adapt plants to their environments. Auxin and cytokinin signaling pathways have been studied extensively. Nevertheless, we do not yet understand the impact on plant stress tolerance of the sophisticated crosstalk between the two hormones. Here, we review current knowledge on the function of auxin and cytokinin in redirecting growth induced by abiotic stress in order to deduce their potential points of crosstalk.


Asunto(s)
Fenómenos Fisiológicos de las Plantas , Plantas/genética , Plantas/metabolismo , Estrés Fisiológico , Adaptación Fisiológica , Transporte Biológico , Citocininas/metabolismo , Regulación de la Expresión Génica de las Plantas , Redes Reguladoras de Genes , Ácidos Indolacéticos/metabolismo , Reguladores del Crecimiento de las Plantas/metabolismo , Transducción de Señal
4.
Plant Physiol ; 167(3): 817-32, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25604530

RESUMEN

Arabidopsis (Arabidopsis thaliana) leaf development relies on subsequent phases of cell proliferation and cell expansion. During the proliferation phase, chloroplasts need to divide extensively, and during the transition from cell proliferation to expansion, they differentiate into photosynthetically active chloroplasts, providing the plant with energy. The transcription factor GROWTH REGULATING FACTOR5 (GRF5) promotes the duration of the cell proliferation period during leaf development. Here, it is shown that GRF5 also stimulates chloroplast division, resulting in a higher chloroplast number per cell with a concomitant increase in chlorophyll levels in 35S:GRF5 leaves, which can sustain higher rates of photosynthesis. Moreover, 35S:GRF5 plants show delayed leaf senescence and are more tolerant for growth on nitrogen-depleted medium. Cytokinins also stimulate leaf growth in part by extending the cell proliferation phase, simultaneously delaying the onset of the cell expansion phase. In addition, cytokinins are known to be involved in chloroplast development, nitrogen signaling, and senescence. Evidence is provided that GRF5 and cytokinins synergistically enhance cell division and chlorophyll retention after dark-induced senescence, which suggests that they also cooperate to stimulate chloroplast division and nitrogen assimilation. Taken together with the increased leaf size, ectopic expression of GRF5 has great potential to improve plant productivity.


Asunto(s)
Proteínas 14-3-3/metabolismo , Arabidopsis/fisiología , Cloroplastos/metabolismo , Fotosíntesis , Hojas de la Planta/fisiología , Transactivadores/metabolismo , Proteínas 14-3-3/genética , Arabidopsis/efectos de los fármacos , Arabidopsis/genética , División Celular/efectos de los fármacos , Clorofila/metabolismo , Cloroplastos/efectos de los fármacos , Cloroplastos/ultraestructura , Citocininas/farmacología , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Genes de Plantas , Nitrógeno/deficiencia , Fotosíntesis/efectos de los fármacos , Hojas de la Planta/efectos de los fármacos , Hojas de la Planta/crecimiento & desarrollo , Hojas de la Planta/ultraestructura , Plantas Modificadas Genéticamente , Transactivadores/genética
5.
Curr Biol ; 24(9): 1031-7, 2014 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-24768050

RESUMEN

The plant hormones auxin and cytokinin mutually coordinate their activities to control various aspects of development [1-9], and their crosstalk occurs at multiple levels [10, 11]. Cytokinin-mediated modulation of auxin transport provides an efficient means to regulate auxin distribution in plant organs. Here, we demonstrate that cytokinin does not merely control the overall auxin flow capacity, but might also act as a polarizing cue and control the auxin stream directionality during plant organogenesis. Cytokinin enhances the PIN-FORMED1 (PIN1) auxin transporter depletion at specific polar domains, thus rearranging the cellular PIN polarities and directly regulating the auxin flow direction. This selective cytokinin sensitivity correlates with the PIN protein phosphorylation degree. PIN1 phosphomimicking mutations, as well as enhanced phosphorylation in plants with modulated activities of PIN-specific kinases and phosphatases, desensitize PIN1 to cytokinin. Our results reveal conceptually novel, cytokinin-driven polarization mechanism that operates in developmental processes involving rapid auxin stream redirection, such as lateral root organogenesis, in which a gradual PIN polarity switch defines the growth axis of the newly formed organ.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Citocininas/metabolismo , Ácidos Indolacéticos/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Raíces de Plantas/crecimiento & desarrollo , Arabidopsis/embriología , Arabidopsis/fisiología , Proteínas de Arabidopsis/biosíntesis , Proteínas de Arabidopsis/genética , Transporte Biológico , Regulación de la Expresión Génica de las Plantas , Histidina Quinasa , Proteínas de Transporte de Membrana/genética , Organogénesis de las Plantas , Fosforilación , Reguladores del Crecimiento de las Plantas/metabolismo , Raíces de Plantas/metabolismo , Proteínas Quinasas/biosíntesis , Proteínas Quinasas/metabolismo , Receptores de Superficie Celular/biosíntesis , Receptores de Superficie Celular/metabolismo , Transducción de Señal
6.
Cell Res ; 23(2): 290-9, 2013 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-23090432

RESUMEN

The puzzle piece-shaped Arabidopsis leaf pavement cells (PCs) with interdigitated lobes and indents is a good model system to investigate the mechanisms that coordinate cell polarity and shape formation within a tissue. Auxin has been shown to coordinate the interdigitation by activating ROP GTPase-dependent signaling pathways. To identify additional components or mechanisms, we screened for mutants with abnormal PC morphogenesis and found that cytokinin signaling regulates the PC interdigitation pattern. Reduction in cytokinin accumulation and defects in cytokinin signaling (such as in ARR7-over-expressing lines, the ahk3cre1 cytokinin receptor mutant, and the ahp12345 cytokinin signaling mutant) enhanced PC interdigitation, whereas over-production of cytokinin and over-activation of cytokinin signaling in an ARR20 over-expression line delayed or abolished PC interdigitation throughout the cotyledon. Genetic and biochemical analyses suggest that cytokinin signaling acts upstream of ROPs to suppress the formation of interdigitated pattern. Our results provide novel mechanistic understanding of the pathways controlling PC shape and uncover a new role for cytokinin signaling in cell morphogenesis.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Citocininas/metabolismo , Hojas de la Planta/citología , Transducción de Señal , Proteínas de Arabidopsis/genética , Citocininas/genética , Proteínas de Unión al GTP/metabolismo , Ácidos Indolacéticos/farmacología , Morfogénesis/efectos de los fármacos , Hojas de la Planta/metabolismo , Plantas Modificadas Genéticamente/metabolismo , Proteínas Quinasas/metabolismo , Receptores de Superficie Celular/metabolismo , Factores de Transcripción/metabolismo
7.
Plant Cell ; 24(10): 3967-81, 2012 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23054471

RESUMEN

The architecture of a plant's root system, established postembryonically, results from both coordinated root growth and lateral root branching. The plant hormones auxin and cytokinin are central endogenous signaling molecules that regulate lateral root organogenesis positively and negatively, respectively. Tight control and mutual balance of their antagonistic activities are particularly important during the early phases of lateral root organogenesis to ensure continuous lateral root initiation (LRI) and proper development of lateral root primordia (LRP). Here, we show that the early phases of lateral root organogenesis, including priming and initiation, take place in root zones with a repressed cytokinin response. Accordingly, ectopic overproduction of cytokinin in the root basal meristem most efficiently inhibits LRI. Enhanced cytokinin responses in pericycle cells between existing LRP might restrict LRI near existing LRP and, when compromised, ectopic LRI occurs. Furthermore, our results demonstrate that young LRP are more sensitive to perturbations in the cytokinin activity than are developmentally more advanced primordia. We hypothesize that the effect of cytokinin on the development of primordia possibly depends on the robustness and stability of the auxin gradient.


Asunto(s)
Proteínas de Arabidopsis/fisiología , Arabidopsis/crecimiento & desarrollo , Citocininas/fisiología , Transferasas Alquil y Aril/química , Transferasas Alquil y Aril/genética , Transferasas Alquil y Aril/metabolismo , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Citocininas/química , Citocininas/genética , Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Ácidos Indolacéticos/metabolismo , Meristema/crecimiento & desarrollo , Datos de Secuencia Molecular , Reguladores del Crecimiento de las Plantas/metabolismo , Raíces de Plantas/crecimiento & desarrollo , Factores de Transcripción/química , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
8.
Philos Trans R Soc Lond B Biol Sci ; 367(1595): 1469-78, 2012 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-22527389

RESUMEN

Phytohormones are important plant growth regulators that control many developmental processes, such as cell division, cell differentiation, organogenesis and morphogenesis. They regulate a multitude of apparently unrelated physiological processes, often with overlapping roles, and they mutually modulate their effects. These features imply important synergistic and antagonistic interactions between the various plant hormones. Auxin and cytokinin are central hormones involved in the regulation of plant growth and development, including processes determining root architecture, such as root pole establishment during early embryogenesis, root meristem maintenance and lateral root organogenesis. Thus, to control root development both pathways put special demands on the mechanisms that balance their activities and mediate their interactions. Here, we summarize recent knowledge on the role of auxin and cytokinin in the regulation of root architecture with special focus on lateral root organogenesis, discuss the latest findings on the molecular mechanisms of their interactions, and present forward genetic screen as a tool to identify novel molecular components of the auxin and cytokinin crosstalk.


Asunto(s)
Arabidopsis/genética , Citocininas/metabolismo , Regulación de la Expresión Génica de las Plantas , Ácidos Indolacéticos/metabolismo , Raíces de Plantas/crecimiento & desarrollo , Arabidopsis/efectos de los fármacos , Arabidopsis/crecimiento & desarrollo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Citocininas/farmacología , Metanosulfonato de Etilo/farmacología , Genes de Plantas , Ácidos Indolacéticos/farmacología , Proteínas de Transporte de Membrana/genética , Proteínas de Transporte de Membrana/metabolismo , Meristema/efectos de los fármacos , Meristema/crecimiento & desarrollo , Meristema/metabolismo , Mutación , Reguladores del Crecimiento de las Plantas/metabolismo , Raíces de Plantas/efectos de los fármacos , Raíces de Plantas/metabolismo , Plantas Modificadas Genéticamente/efectos de los fármacos , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/crecimiento & desarrollo , Plantas Modificadas Genéticamente/metabolismo , Plantones/efectos de los fármacos , Plantones/crecimiento & desarrollo , Plantones/metabolismo , Transducción de Señal
9.
Dev Cell ; 21(4): 796-804, 2011 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-21962902

RESUMEN

Cytokinin is an important regulator of plant growth and development. In Arabidopsis thaliana, the two-component phosphorelay mediated through a family of histidine kinases and response regulators is recognized as the principal cytokinin signal transduction mechanism activating the complex transcriptional response to control various developmental processes. Here, we identified an alternative mode of cytokinin action that uses endocytic trafficking as a means to direct plant organogenesis. This activity occurs downstream of known cytokinin receptors but through a branch of the cytokinin signaling pathway that does not involve transcriptional regulation. We show that cytokinin regulates endocytic recycling of the auxin efflux carrier PINFORMED1 (PIN1) by redirecting it for lytic degradation in vacuoles. Stimulation of the lytic PIN1 degradation is not a default effect for general downregulation of proteins from plasma membranes, but a specific mechanism to rapidly modulate the auxin distribution in cytokinin-mediated developmental processes.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/crecimiento & desarrollo , Arabidopsis/genética , Citocininas/farmacología , Endocitosis , Ácidos Indolacéticos/farmacología , Proteínas de Transporte de Membrana/metabolismo , Raíces de Plantas/citología , Transporte de Proteínas , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Western Blotting , Membrana Celular/metabolismo , Regulación de la Expresión Génica de las Plantas , Proteínas de Transporte de Membrana/genética , Organogénesis , Reguladores del Crecimiento de las Plantas/farmacología , Raíces de Plantas/metabolismo , ARN Mensajero/genética , ARN de Planta/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Semillas/crecimiento & desarrollo , Semillas/metabolismo , Vacuolas/metabolismo
10.
Dev Cell ; 20(6): 855-66, 2011 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-21664582

RESUMEN

The phytohormone auxin is an important determinant of plant development. Directional auxin flow within tissues depends on polar localization of PIN auxin transporters. To explore regulation of PIN-mediated auxin transport, we screened for suppressors of PIN1 overexpression (supo) and identified an inositol polyphosphate 1-phosphatase mutant (supo1), with elevated inositol trisphosphate (InsP(3)) and cytosolic Ca(2+) levels. Pharmacological and genetic increases in InsP(3) or Ca(2+) levels also suppressed the PIN1 gain-of-function phenotypes and caused defects in basal PIN localization, auxin transport and auxin-mediated development. In contrast, the reductions in InsP(3) levels and Ca(2+) signaling antagonized the effects of the supo1 mutation and disrupted preferentially apical PIN localization. InsP(3) and Ca(2+) are evolutionarily conserved second messengers involved in various cellular functions, particularly stress responses. Our findings implicate them as modifiers of cell polarity and polar auxin transport, and highlight a potential integration point through which Ca(2+) signaling-related stimuli could influence auxin-mediated development.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Calcio/metabolismo , Polaridad Celular , Ácidos Indolacéticos/metabolismo , Inositol 1,4,5-Trifosfato/metabolismo , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Western Blotting , Citosol/metabolismo , Regulación de la Expresión Génica de las Plantas , Proteínas de Transporte de Membrana/metabolismo , Proteínas Mutantes/metabolismo , Monoéster Fosfórico Hidrolasas , Transducción de Señal
11.
Curr Opin Plant Biol ; 13(6): 677-83, 2010 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-20934368

RESUMEN

Unlike locomotive organisms capable of actively approaching essential resources, sessile plants must efficiently exploit their habitat for water and nutrients. This involves root-mediated underground interactions allowing plants to adapt to soils of diverse qualities. The root system of plants is a dynamic structure that modulates primary root growth and root branching by continuous integration of environmental inputs, such as nutrition availability, soil aeration, humidity, or salinity. Root branching is an extremely flexible means to rapidly adjust the overall surface of the root system and plants have evolved efficient control mechanisms, including, firstly initiation, when and where to start lateral root formation; secondly lateral root primordia organogenesis, during which the development of primordia can be arrested for a certain time; and thirdly lateral root emergence. Our review will focus on the most recent advances in understanding the molecular mechanisms involved in the regulation of lateral root initiation and organogenesis with the main focus on root system of the model plant Arabidopsis thaliana.


Asunto(s)
Organogénesis/fisiología , Raíces de Plantas/citología , Raíces de Plantas/metabolismo , Arabidopsis/citología , Arabidopsis/crecimiento & desarrollo , Arabidopsis/metabolismo , División Celular/genética , División Celular/fisiología , Organogénesis/genética , Reguladores del Crecimiento de las Plantas/metabolismo , Raíces de Plantas/crecimiento & desarrollo , Transducción de Señal/genética , Transducción de Señal/fisiología
12.
Dev Cell ; 18(6): 927-37, 2010 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-20627075

RESUMEN

Nitrate is both a nitrogen source for higher plants and a signal molecule regulating their development. In Arabidopsis, the NRT1.1 nitrate transporter is crucial for nitrate signaling governing root growth, and has been proposed to act as a nitrate sensor. However, the sensing mechanism is unknown. Herein we show that NRT1.1 not only transports nitrate but also facilitates uptake of the phytohormone auxin. Moreover, nitrate inhibits NRT1.1-dependent auxin uptake, suggesting that transduction of nitrate signal by NRT1.1 is associated with a modification of auxin transport. Among other effects, auxin stimulates lateral root development. Mutation of NRT1.1 enhances both auxin accumulation in lateral roots and growth of these roots at low, but not high, nitrate concentration. Thus, we propose that NRT1.1 represses lateral root growth at low nitrate availability by promoting basipetal auxin transport out of these roots. This defines a mechanism connecting nutrient and hormone signaling during organ development.


Asunto(s)
Arabidopsis/metabolismo , Alimentos , Ácidos Indolacéticos/metabolismo , Nitratos/metabolismo , Proteínas de Unión Periplasmáticas/metabolismo , Proteínas Supresoras de Tumor/metabolismo , Animales , Arabidopsis/crecimiento & desarrollo , Transporte Biológico Activo/fisiología , Células Cultivadas , Células Quimiorreceptoras/metabolismo , Femenino , Regulación de la Expresión Génica de las Plantas/fisiología , Mutación/genética , Oocitos , Proteínas de Unión Periplasmáticas/genética , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/metabolismo , Transducción de Señal/fisiología , Proteínas Supresoras de Tumor/genética , Xenopus
13.
Nature ; 459(7250): 1136-40, 2009 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-19506555

RESUMEN

The plant signalling molecule auxin provides positional information in a variety of developmental processes by means of its differential distribution (gradients) within plant tissues. Thus, cellular auxin levels often determine the developmental output of auxin signalling. Conceptually, transmembrane transport and metabolic processes regulate the steady-state levels of auxin in any given cell. In particular, PIN auxin-efflux-carrier-mediated, directional transport between cells is crucial for generating auxin gradients. Here we show that Arabidopsis thaliana PIN5, an atypical member of the PIN gene family, encodes a functional auxin transporter that is required for auxin-mediated development. PIN5 does not have a direct role in cell-to-cell transport but regulates intracellular auxin homeostasis and metabolism. PIN5 localizes, unlike other characterized plasma membrane PIN proteins, to endoplasmic reticulum (ER), presumably mediating auxin flow from the cytosol to the lumen of the ER. The ER localization of other PIN5-like transporters (including the moss PIN) indicates that the diversification of PIN protein functions in mediating auxin homeostasis at the ER, and cell-to-cell auxin transport at the plasma membrane, represent an ancient event during the evolution of land plants.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/fisiología , Retículo Endoplásmico/metabolismo , Homeostasis/fisiología , Ácidos Indolacéticos/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Arabidopsis/clasificación , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Células Cultivadas , Técnicas de Inactivación de Genes , Proteínas de Transporte de Membrana/genética , Mutación , Fenotipo , Filogenia , Reguladores del Crecimiento de las Plantas/metabolismo
14.
Development ; 135(20): 3345-54, 2008 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-18787070

RESUMEN

The signalling molecule auxin controls plant morphogenesis via its activity gradients, which are produced by intercellular auxin transport. Cellular auxin efflux is the rate-limiting step in this process and depends on PIN and phosphoglycoprotein (PGP) auxin transporters. Mutual roles for these proteins in auxin transport are unclear, as is the significance of their interactions for plant development. Here, we have analysed the importance of the functional interaction between PIN- and PGP-dependent auxin transport in development. We show by analysis of inducible overexpression lines that PINs and PGPs define distinct auxin transport mechanisms: both mediate auxin efflux but they play diverse developmental roles. Components of both systems are expressed during embryogenesis, organogenesis and tropisms, and they interact genetically in both synergistic and antagonistic fashions. A concerted action of PIN- and PGP-dependent efflux systems is required for asymmetric auxin distribution during these processes. We propose a model in which PGP-mediated efflux controls auxin levels in auxin channel-forming cells and, thus, auxin availability for PIN-dependent vectorial auxin movement.


Asunto(s)
Subfamilia B de Transportador de Casetes de Unión a ATP/metabolismo , Proteínas de Arabidopsis/metabolismo , Regulación de la Expresión Génica de las Plantas , Ácidos Indolacéticos/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Fenómenos Fisiológicos de las Plantas , Subfamilia B de Transportador de Casetes de Unión a ATP/análisis , Subfamilia B de Transportador de Casetes de Unión a ATP/genética , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/análisis , Proteínas de Arabidopsis/genética , Transporte Biológico/fisiología , Proteínas de Transporte de Membrana/análisis , Proteínas de Transporte de Membrana/genética , Modelos Biológicos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...