Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Cell Rep ; 43(4): 114012, 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38573856

RESUMEN

Plasmodium falciparum is a human-adapted apicomplexan parasite that causes the most dangerous form of malaria. P. falciparum cysteine-rich protective antigen (PfCyRPA) is an invasion complex protein essential for erythrocyte invasion. The precise role of PfCyRPA in this process has not been resolved. Here, we show that PfCyRPA is a lectin targeting glycans terminating with α2-6-linked N-acetylneuraminic acid (Neu5Ac). PfCyRPA has a >50-fold binding preference for human, α2-6-linked Neu5Ac over non-human, α2-6-linked N-glycolylneuraminic acid. PfCyRPA lectin sites were predicted by molecular modeling and validated by mutagenesis studies. Transgenic parasite lines expressing endogenous PfCyRPA with single amino acid exchange mutants indicated that the lectin activity of PfCyRPA has an important role in parasite invasion. Blocking PfCyRPA lectin activity with small molecules or with lectin-site-specific monoclonal antibodies can inhibit blood-stage parasite multiplication. Therefore, targeting PfCyRPA lectin activity with drugs, immunotherapy, or a vaccine-primed immune response is a promising strategy to prevent and treat malaria.


Asunto(s)
Eritrocitos , Plasmodium falciparum , Polisacáridos , Proteínas Protozoarias , Humanos , Antígenos de Protozoos/metabolismo , Antígenos de Protozoos/inmunología , Antígenos de Protozoos/genética , Eritrocitos/parasitología , Eritrocitos/metabolismo , Lectinas/metabolismo , Lectinas/genética , Malaria Falciparum/parasitología , Plasmodium falciparum/metabolismo , Polisacáridos/metabolismo , Unión Proteica , Proteínas Protozoarias/metabolismo , Proteínas Protozoarias/genética
2.
mBio ; : e0171823, 2023 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-37882543

RESUMEN

Plasmodium parasites rely on a functional electron transport chain (ETC) within their mitochondrion for proliferation, and compounds targeting mitochondrial functions are validated antimalarials. Here, we localize Plasmodium falciparum patatin-like phospholipase 2 (PfPNPLA2, PF3D7_1358000) to the mitochondrion and reveal that disruption of the PfPNPLA2 gene impairs asexual replication. PfPNPLA2-null parasites are hypersensitive to proguanil and inhibitors of the mitochondrial ETC, including atovaquone. In addition, PfPNPLA2-deficient parasites show reduced mitochondrial respiration and reduced mitochondrial membrane potential, indicating that disruption of PfPNPLA2 leads to a defect in the parasite ETC. Lipidomic analysis of the mitochondrial phospholipid cardiolipin (CL) reveals that loss of PfPNPLA2 is associated with a moderate shift toward shorter-chained and more saturated CL species, implying a contribution of PfPNPLA2 to CL remodeling. PfPNPLA2-deficient parasites display profound defects in gametocytogenesis, underlining the importance of a functional mitochondrial ETC during both the asexual and sexual development of the parasite. IMPORTANCE For their proliferation within red blood cells, malaria parasites depend on a functional electron transport chain (ETC) within their mitochondrion, which is the target of several antimalarial drugs. Here, we have used gene disruption to identify a patatin-like phospholipase, PfPNPLA2, as important for parasite replication and mitochondrial function in Plasmodium falciparum. Parasites lacking PfPNPLA2 show defects in their ETC and become hypersensitive to mitochondrion-targeting drugs. Furthermore, PfPNPLA2-deficient parasites show differences in the composition of their cardiolipins, a unique class of phospholipids with key roles in mitochondrial functions. Finally, we demonstrate that parasites devoid of PfPNPLA2 have a defect in gametocyte maturation, underlining the importance of a functional ETC for parasite transmission to the mosquito vector.

3.
mBio ; 14(4): e0141323, 2023 08 31.
Artículo en Inglés | MEDLINE | ID: mdl-37489900

RESUMEN

For its replication within red blood cells, the malaria parasite depends on a highly active and regulated lipid metabolism. Enzymes involved in lipid metabolic processes such as phospholipases are, therefore, potential drug targets. Here, using reverse genetics approaches, we show that only 1 out of the 19 putative phospholipases expressed in asexual blood stages of Plasmodium falciparum is essential for proliferation in vitro, pointing toward a high level of redundancy among members of this enzyme family. Using conditional mislocalization and gene disruption techniques, we show that this essential phosphoinositide-specific phospholipase C (PI-PLC, PF3D7_1013500) has a previously unrecognized essential role during intracellular parasite maturation, long before its previously perceived role in parasite egress and invasion. Subsequent lipidomic analysis suggests that PI-PLC mediates cleavage of phosphatidylinositol bisphosphate (PIP2) in schizont-stage parasites, underlining its critical role in regulating phosphoinositide levels in the parasite. IMPORTANCE The clinical symptoms of malaria arise due to repeated rounds of replication of Plasmodium parasites within red blood cells (RBCs). Central to this is an intense period of membrane biogenesis. Generation of membranes not only requires de novo synthesis and acquisition but also the degradation of phospholipids, a function that is performed by phospholipases. In this study, we investigate the essentiality of the 19 putative phospholipase enzymes that the human malaria parasite Plasmodium falciparum expresses during its replication within RBCs. We not only show that a high level of functional redundancy exists among these enzymes but, at the same time, also identify an essential role for the phosphoinositide-specific phospholipase C in parasite development and cleavage of the phospholipid phosphatidylinositol bisphosphate.


Asunto(s)
Malaria Falciparum , Malaria , Parásitos , Animales , Humanos , Plasmodium falciparum/metabolismo , Parásitos/metabolismo , Fosfoinositido Fosfolipasa C/metabolismo , Fosfolipasas/genética , Fosfolipasas/metabolismo , Proteínas Protozoarias/genética , Proteínas Protozoarias/metabolismo , Malaria/metabolismo , Fosfolípidos/metabolismo , Fosfatidilinositoles/metabolismo , Eritrocitos/parasitología , Malaria Falciparum/parasitología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA