Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Physiol Rep ; 10(18): e15407, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-36117385

RESUMEN

Atrial fibrillation (AF) is the most common arrhythmia in the United States, affecting approximately 1 in 10 adults, and its prevalence is expected to rise as the population ages. Treatment options for AF are limited; moreover, the development of new treatments is hindered by limited (1) knowledge regarding human atrial electrophysiological endpoints (e.g., conduction velocity [CV]) and (2) accurate experimental models. Here, we measured the CV and refractory period, and subsequently calculated the conduction wavelength, in vivo (four subjects with AF and four controls), and ex vivo (atrial slices from human hearts). Then, we created an in vitro model of human atrial conduction using induced pluripotent stem (iPS) cells. This model consisted of iPS-derived human atrial cardiomyocytes plated onto a micropatterned linear 1D spiral design of Matrigel. The CV (34-41 cm/s) of the in vitro model was nearly five times faster than 2D controls (7-9 cm/s) and similar to in vivo (40-64 cm/s) and ex vivo (28-51 cm/s) measurements. Our iPS-derived in vitro model recapitulates key features of in vivo atrial conduction and may be a useful methodology to enhance our understanding of AF and model patient-specific disease.


Asunto(s)
Fibrilación Atrial , Sistema de Conducción Cardíaco , Adulto , Atrios Cardíacos , Frecuencia Cardíaca , Humanos
2.
Transplantation ; 106(7): 1376-1389, 2022 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-34923540

RESUMEN

BACKGROUND: The International Society for Heart and Lung Transplant consensus panel notes that too little data exist regarding the role of non-HLA in allograft rejection. We developed a novel shotgun immunoproteomic approach to determine the identities and potential roles non-HLA play in antibody-mediated rejection (AMR) in heart transplant recipients. METHODS: Serum was collected longitudinally from heart transplant recipients experiencing AMR in the absence of donor-specific anti-HLA antibodies (n = 6) and matched no rejection controls (n = 7). Antidonor heart affinity chromatography columns were formed by recipient immunoglobulin G immobilization at transplantation, acute rejection, and chronic postrejection time points. Affinity chromatography columns were used to capture antigens from individual patient's donor heart biopsies collected at transplantation. Captured proteins were subjected to quantitative proteomic analysis and the longitudinal response was calculated. RESULTS: Overlap in antigen-specific response between AMR and non-AMR patients was only 8.3%. In AMR patients, a total of 155 non-HLAs were identified, with responses toward 43 high prevalence antigens found in ≥50% of patients. Immunofluorescence staining for representative high prevalence antigens demonstrated that their abundance increased at acute rejection, correlating with their respective non-HLA antibody response. Physiological changes in cardiomyocyte and endothelial cell function, following in vitro culture with patient immunoglobulin G, correlated with response toward several high prevalence antigens. CONCLUSIONS: This work demonstrates a novel high-throughput strategy to identify clinically relevant non-HLA from donor endomyocardial biopsy. Such a technique has the potential to improve understanding of longitudinal timing of antigen-specific responses and their cause and effect relationship in graft rejection.


Asunto(s)
Trasplante de Corazón , Rechazo de Injerto , Antígenos HLA , Trasplante de Corazón/efectos adversos , Humanos , Inmunoglobulina G , Proteómica , Donantes de Tejidos
3.
Adv Exp Med Biol ; 1212: 1-29, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-30850960

RESUMEN

Induced pluripotent stem cells (iPSCs) offer great promise in the areas of disease modeling, basic research, drug development, and regenerative medicine. Much of their value comes from the fact that they can be used to create otherwise inaccessible cell types, such as cardiomyocytes, which are genetically matched to a patient or any other individual of interest. A consistent issue plaguing the iPSC platform, however, involves excessive variability exhibited in the differentiated products. This includes discrepancies in genetic, epigenetic, and transcriptional features, cell signalling, the cell types produced from cardiac differentiation, and cardiomyocyte functionality. These properties can result from both the somatic source cells and environmental conditions related to the derivation and handling of these cells. Understanding the potential sources of variability, along with determining which factors are most relevant to a given application, are essential in advancing iPSC-based technologies.


Asunto(s)
Células Madre Pluripotentes Inducidas/citología , Miocitos Cardíacos/citología , Medicina Regenerativa , Diferenciación Celular , Humanos
4.
Stem Cells Dev ; 29(2): 75-89, 2020 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-31744402

RESUMEN

The functional maturation status of human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) has a notable impact upon their use in pharmacological studies, disease modeling, and therapeutic applications. Non-cardiomyocytes (non-CMs) produced in the differentiation process have previously been identified as having an extrinsic influence upon hiPSC-CM development, yet the underlying mechanisms are not fully understood. Herein, we aimed to modulate electrophysiological properties of hiPSC-CMs within co-cultures containing varied proportions of non-CMs and investigate the nature of interactions between these different cell types. Therefore, we sorted cardiac differentiations on day 10 and subsequently replated the cells at ratios of 7:3, 1:1, 3:7, and 1:9 non-CMs to CMs. After a month of co-culture, we evaluated electrophysiological properties through the genetically encoded voltage indicator ArcLight. We ultimately identified that co-cultures with approximately 70%-90% CM purity demonstrated the highest action potential (AP) amplitude and maximum upstroke velocity by day 40 of differentiation, indicative of enhanced electrophysiological maturation, as well as more ventricular-like AP morphologies. Notably, these findings were distinct from those observed for co-cultures of hiPSC-CMs and dermal fibroblasts. We determined that the co-culture phenotypes could not be attributed to paracrine effects of non-CMs due to the inability of conditioned media to recapitulate the observed effects. This led to the further observation of a distinctive expression pattern of connexin 43 (Cx43) at cell-cell interfaces between both CMs and non-CMs. Depletion of Cx43 by short hairpin RNA (shRNA) specifically in the non-CM population within a co-culture environment was able to recapitulate electrophysiological phenotypes of a purer hiPSC-CM population. Collectively, our data demonstrate that abundant non-CM content exerts a significant negative influence upon the electrophysiological maturation of hiPSC-CMs through Cx43-mediated cell-cell-contacts, and thus should be considered regarding the future production of purpose-built hiPSC-CM systems.


Asunto(s)
Potenciales de Acción/fisiología , Comunicación Celular/fisiología , Diferenciación Celular/fisiología , Conexina 43/metabolismo , Células Madre Pluripotentes Inducidas/fisiología , Miocitos Cardíacos/fisiología , Células Cultivadas , Conexina 43/genética , Medios de Cultivo Condicionados/farmacología , Fenómenos Electrofisiológicos/efectos de los fármacos , Femenino , Técnica del Anticuerpo Fluorescente , Expresión Génica , Humanos , Células Madre Pluripotentes Inducidas/citología , Miocitos Cardíacos/citología , Técnicas de Placa-Clamp
5.
Stem Cells Dev ; 28(10): 659-673, 2019 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-30892143

RESUMEN

The ability to accurately phenotype cells differentiated from human induced pluripotent stem cells (hiPSCs) is essential for their application in modeling developmental and disease processes, yet also poses a particular challenge without the context of anatomical location. Our specific objective was to determine if single-cell gene expression was sufficient to predict the electrophysiology of iPSC-derived cardiac lineages, to evaluate the concordance between molecular and functional surrogate markers. To this end, we used the genetically encoded voltage indicator ArcLight to profile hundreds of hiPSC-derived cardiomyocytes (hiPSC-CMs), thus identifying patterns of electrophysiological maturation and increased prevalence of cells with atrial-like action potentials (APs) between days 11 and 42 of differentiation. To profile expression patterns of cardiomyocyte subtype-associated genes, single-cell RNA-seq was performed at days 12 and 40 after the populations were fully characterized with the high-throughput ArcLight platform. Although we could detect global gene expression changes supporting progressive differentiation, individual cellular expression patterns alone were not able to delineate the individual cardiomyocytes into atrial, ventricular, or nodal subtypes as functionally documented by electrophysiology measurements. Furthermore, our efforts to understand the distinct electrophysiological properties associated with day 12 versus day 40 hiPSC-CMs revealed that ion channel regulators SLMAP, FGF12, and FHL1 were the most significantly increased genes at day 40, categorized by electrophysiology-related gene functions. Notably, FHL1 knockdown during differentiation was sufficient to significantly modulate APs toward ventricular-like electrophysiology. Thus, our results establish the inability of subtype-associated gene expression patterns to specifically categorize hiPSC-derived cells according to their functional electrophysiology, and yet, altered FHL1 expression is able to redirect electrophysiological maturation of these developing cells. Therefore, noncanonical gene expression patterns of cardiac maturation may be sufficient to direct functional maturation of cardiomyocytes, with canonical gene expression patterns being insufficient to temporally define cardiac subtypes of in vitro differentiation.


Asunto(s)
Fenómenos Electrofisiológicos/fisiología , Células Madre Pluripotentes Inducidas/citología , Células Madre Pluripotentes Inducidas/fisiología , Miocitos Cardíacos/citología , Miocitos Cardíacos/fisiología , Potenciales de Acción/fisiología , Secuencia de Bases , Diferenciación Celular/fisiología , Células Cultivadas , Factores de Crecimiento de Fibroblastos/genética , Humanos , Péptidos y Proteínas de Señalización Intracelular/genética , Proteínas con Dominio LIM/genética , Proteínas de la Membrana/genética , Proteínas Musculares/genética , Análisis de Secuencia de ARN
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...