RESUMEN
Early identification and intervention of individuals with an increased risk for bipolar disorder (BD) may improve the course of illness and prevent longterm consequences. Early-BipoLife, a multicenter, prospective, naturalistic study, examined risk factors of BD beyond family history in participants aged 15-35 years. At baseline, positively screened help-seeking participants (screenBD at-risk) were recruited at Early Detection Centers and in- and outpatient depression and attention-deficit/hyperactivity disorder (ADHD) settings, references (Ref) drawn from a representative cohort. Participants reported sociodemographics and medical history and were repeatedly examined regarding psychopathology and the course of risk factors. N = 1,083 screenBD at-risk and n = 172 Ref were eligible for baseline assessment. Within the first two years, n = 31 screenBD at-risk (2.9 %) and none of Ref developed a manifest BD. The cumulative transition risk was 0.0028 at the end of multistep assessment, 0.0169 at 12 and 0.0317 at 24 months (p = 0.021). The transition rate with a BD family history was 6.0 %, 4.7 % in the Early Phase Inventory for bipolar disorders (EPIbipolar), 6.6 % in the Bipolar Prodrome Interview and Symptom Scale-Prospective (BPSS-FP) and 3.2 % with extended Bipolar At-Risk - BARS criteria). In comparison to help-seeking young patients from psychosis detection services, transition rates in screenBD at-risk participants were lower. The findings of Early-BipoLife underscore the importance of considering risk factors beyond family history in order to improved early detection and interventions to prevent/ameliorate related impairment in the course of BD. Large long-term cohort studies are crucial to understand the developmental pathways and long-term course of BD, especially in people at- risk.
Asunto(s)
Trastorno Bipolar , Trastornos Psicóticos , Humanos , Adolescente , Trastorno Bipolar/diagnóstico , Trastorno Bipolar/epidemiología , Estudios Prospectivos , Factores de Riesgo , Medición de RiesgoRESUMEN
The pathophysiology of bipolar disorder (BD) remains mostly unclear. Yet, a valid biomarker is necessary to improve upon the early detection of this serious disorder. Patients with manifest BD display reduced volumes of the hippocampal subfields and amygdala nuclei. In this pre-registered analysis, we used structural MRI (n = 271, 7 sites) to compare volumes of hippocampus, amygdala and their subfields/nuclei between help-seeking subjects divided into risk groups for BD as estimated by BPSS-P, BARS and EPIbipolar. We performed between-group comparisons using linear mixed effects models for all three risk assessment tools. Additionally, we aimed to differentiate the risk groups using a linear support vector machine. We found no significant volume differences between the risk groups for all limbic structures during the main analysis. However, the SVM could still classify subjects at risk according to BPSS-P criteria with a balanced accuracy of 66.90% (95% CI 59.2-74.6) for 10-fold cross-validation and 61.9% (95% CI 52.0-71.9) for leave-one-site-out. Structural alterations of the hippocampus and amygdala may not be as pronounced in young people at risk; nonetheless, machine learning can predict the estimated risk for BD above chance. This suggests that neural changes may not merely be a consequence of BD and may have prognostic clinical value.
RESUMEN
Lithium is regarded as the first-line treatment for bipolar disorder (BD), a severe and disabling mental disorder that affects about 1% of the population worldwide. Nevertheless, lithium is not consistently effective, with only 30% of patients showing a favorable response to treatment. To provide personalized treatment options for bipolar patients, it is essential to identify prediction biomarkers such as polygenic scores. In this study, we developed a polygenic score for lithium treatment response (Li+PGS) in patients with BD. To gain further insights into lithium's possible molecular mechanism of action, we performed a genome-wide gene-based analysis. Using polygenic score modeling, via methods incorporating Bayesian regression and continuous shrinkage priors, Li+PGS was developed in the International Consortium of Lithium Genetics cohort (ConLi+Gen: N=2,367) and replicated in the combined PsyCourse (N=89) and BipoLife (N=102) studies. The associations of Li+PGS and lithium treatment response - defined in a continuous ALDA scale and a categorical outcome (good response vs. poor response) were tested using regression models, each adjusted for the covariates: age, sex, and the first four genetic principal components. Statistical significance was determined at P<����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������.
RESUMEN
Objective: Identifying high-risk groups with an increased genetic liability for bipolar disorder (BD) will provide insights into the etiology of BD and contribute to early detection of BD. We used the BD polygenic risk score (PRS) derived from BD genome-wide association studies (GWAS) to explore how such genetic risk manifests in young, high-risk adults. We postulated that BD-PRS would be associated with risk factors for BD. Methods: A final sample of 185 young, high-risk German adults (aged 18-35 years) were grouped into three risk groups and compared to a healthy control group (n = 1,100). The risk groups comprised 117 cases with attention deficit hyperactivity disorder (ADHD), 45 with major depressive disorder (MDD), and 23 help-seeking adults with early recognition symptoms [ER: positive family history for BD, (sub)threshold affective symptomatology and/or mood swings, sleeping disorder]. BD-PRS was computed for each participant. Logistic regression models (controlling for sex, age, and the first five ancestry principal components) were used to assess associations of BD-PRS and the high-risk phenotypes. Results: We observed an association between BD-PRS and combined risk group status (OR = 1.48, p < 0.001), ADHD diagnosis (OR = 1.32, p = 0.009), MDD diagnosis (OR = 1.96, p < 0.001), and ER group status (OR = 1.7, p = 0.025; not significant after correction for multiple testing) compared to healthy controls. Conclusions: In the present study, increased genetic risk for BD was a significant predictor for MDD and ADHD status, but not for ER. These findings support an underlying shared risk for both MDD and BD as well as ADHD and BD. Improving our understanding of the underlying genetic architecture of these phenotypes may aid in early identification and risk stratification.