Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
2.
Acta Neuropathol Commun ; 11(1): 181, 2023 11 14.
Artículo en Inglés | MEDLINE | ID: mdl-37964332

RESUMEN

Tau seed amplification assays (SAAs) directly measure the seeding activity of tau and would therefore be ideal biomarkers for clinical trials targeting seeding-competent tau in Alzheimer's disease (AD). However, the precise relationship between tau seeding measured by SAA and the levels of pathological forms of tau in the AD brain remains unknown. We developed a new tau SAA based on full-length 0N3R tau with sensitivity in the low fg/ml range and used it to characterize 103 brain samples from three independent cohorts. Tau seeding clearly discriminated between AD and control brain samples. Interestingly, seeding was absent in Progressive Supranuclear Palsy (PSP) putamen, suggesting that our tau SAA did not amplify 4R tau aggregates from PSP brain. The specificity of our tau SAA for AD brain was further supported by analysis of matched hippocampus and cerebellum samples. While seeding was detected in hippocampus from Braak stages I-II, no seeding was present in AD cerebellum that is devoid of tau inclusions. Analysis of 40 middle frontal gyrus samples encompassing all Braak stages showed that tau SAA seeding activity gradually increased with Braak stage. This relationship between seeding activity and the presence of tau inclusions in AD brain was further supported by robust correlations between tau SAA results and the levels of phosphorylated tau212/214, phosphorylated tau181, aggregated tau, and sarkosyl-insoluble tau. Strikingly, we detected tau seeding in the middle frontal gyrus already at Braak stage II-III, suggesting that tau SAA can detect tau pathology earlier than conventional immunohistochemical staining. In conclusion, our data suggest a quantitative relationship between tau seeding activity and pathological forms of tau in the human brain and provides an important basis for further development of tau SAA for accessible human samples.


Asunto(s)
Enfermedad de Alzheimer , Parálisis Supranuclear Progresiva , Humanos , Enfermedad de Alzheimer/patología , Proteínas tau/metabolismo , Encéfalo/patología , Parálisis Supranuclear Progresiva/patología , Cerebelo/patología
3.
Neurobiol Aging ; 109: 64-77, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34655982

RESUMEN

In Alzheimer disease, Tau pathology is thought to propagate from cell to cell throughout interconnected brain areas. However, the forms of Tau released into the brain interstitial fluid (ISF) in vivo during the development of Tauopathy and their pathological relevance remain unclear. Combining in vivo microdialysis and biochemical analysis, we find that in Tau transgenic mice, human Tau (hTau) present in brain ISF is truncated and comprises at least 10 distinct fragments spanning the entire Tau protein. The fragmentation pattern is similar across different Tau transgenic models, pathological stages and brain areas. ISF hTau concentration decreases during Tauopathy progression, while its phosphorylation increases. ISF from mice with established Tauopathy induces Tau aggregation in HEK293-Tau biosensor cells. Notably, immunodepletion of ISF phosphorylated Tau, but not Tau fragments, significantly reduces its ability to seed Tau aggregation and only a fraction of Tau, separated by ultracentrifugation, is seeding-competent. These results indicate that ISF seeding competence is driven by a small subset of Tau, which potentially contribute to the propagation of Tau pathology.


Asunto(s)
Encéfalo/metabolismo , Líquido Extracelular/metabolismo , Tauopatías/metabolismo , Proteínas tau/metabolismo , Animales , Modelos Animales de Enfermedad , Células HEK293 , Humanos , Ratones Transgénicos , Microdiálisis , Fragmentos de Péptidos/metabolismo , Fosforilación , Agregación Patológica de Proteínas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...