Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 72
Filtrar
1.
Sensors (Basel) ; 23(19)2023 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-37836942

RESUMEN

Cardio-mechanical monitoring techniques, such as Seismocardiography (SCG) and Gyrocardiography (GCG), have received an ever-growing interest in recent years as potential alternatives to Electrocardiography (ECG) for heart rate monitoring. Wearable SCG and GCG devices based on lightweight accelerometers and gyroscopes are particularly appealing for continuous, long-term monitoring of heart rate and its variability (HRV). Heartbeat detection in cardio-mechanical signals is usually performed with the support of a concurrent ECG lead, which, however, limits their applicability in standalone cardio-mechanical monitoring applications. The complex and variable morphology of SCG and GCG signals makes the ECG-free heartbeat detection task quite challenging; therefore, only a few methods have been proposed. Very recently, a template matching method based on normalized cross-correlation (NCC) has been demonstrated to provide very accurate detection of heartbeats and estimation of inter-beat intervals in SCG and GCG signals of pathological subjects. In this study, the accuracy of HRV indices obtained with this template matching method is evaluated by comparison with ECG. Tests were performed on two public datasets of SCG and GCG signals from healthy and pathological subjects. Linear regression, correlation, and Bland-Altman analyses were carried out to evaluate the agreement of 24 HRV indices obtained from SCG and GCG signals with those obtained from ECG signals, simultaneously acquired from the same subjects. The results of this study show that the NCC-based template matching method allowed estimating HRV indices from SCG and GCG signals of healthy subjects with acceptable accuracy. On healthy subjects, the relative errors on time-domain indices ranged from 0.25% to 15%, on frequency-domain indices ranged from 10% to 20%, and on non-linear indices were within 8%. The estimates obtained on signals from pathological subjects were affected by larger errors. Overall, GCG provided slightly better performances as compared to SCG, both on healthy and pathological subjects. These findings provide, for the first time, clear evidence that monitoring HRV via SCG and GCG sensors without concurrent ECG is feasible with the NCC-based template matching method for heartbeat detection.


Asunto(s)
Electrocardiografía , Corazón , Humanos , Frecuencia Cardíaca/fisiología , Corazón/fisiología , Monitoreo Fisiológico , Determinación de la Frecuencia Cardíaca
2.
Physiol Meas ; 44(9)2023 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-37659397

RESUMEN

Objective.The auscultatory technique is still considered the most accurate method for non-invasive blood pressure (NIBP) measurement, although its reliability depends on operator's skills. Various methods for automated Korotkoff sounds analysis have been proposed for reliable estimation of systolic (SBP) and diastolic (DBP) blood pressures. To this aim, very complex methodologies have been presented, including some based on artificial intelligence (AI). This study proposes a relatively simple methodology, named B3X, to estimate SBP and DBP by processing Korotkoff sounds recordings acquired during an auscultatory NIBP measurement.Approach.The beat-by-beat change in morphology of adjacent Korotkoff sounds is evaluated via their cross-correlation. The time series of the beat-by-beat cross-correlation and its first derivative are analyzed to locate the timings of SBP and DBP values. Extensive tests were performed on a public database of 350 annotated measurements, and the performance was evaluated according to the BHS, AAMI/ANSI, and International Organization for Standardization (ISO) quality standards.Main results.The proposed approach achieved 'A' scores for SBP and DBP in the BHS grading system, and passed the quality tests of AAMI/ANSI and ISO standards. The B3X algorithm outperformed two well-established algorithms for oscillometric NIBP measurement in both SBP and DBP estimation. It also outperformed four AI-based algorithms in DBP estimation, while providing comparable performance for SBP, at the cost of a much lower computational burden. The full code of the B3X algorithm is provided in a public repository.Significance.The very good performances ensured by the proposed B3X algorithm, at a low computational cost and without the need for parameter training, support its direct implementation into clinical blood pressure (BP) monitoring devices. The results of this study pave the way for solving/overcoming the trade-off between the accuracy of the auscultatory technique and the objectivity of oscillatory measurements, by bringing an automated auscultatory BP measurement method in clinical practice.

3.
Sensors (Basel) ; 23(10)2023 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-37430606

RESUMEN

Cardiac monitoring can be performed by means of an accelerometer attached to a subject's chest, which produces the Seismocardiography (SCG) signal. Detection of SCG heartbeats is commonly carried out by taking advantage of a simultaneous electrocardiogram (ECG). SCG-based long-term monitoring would certainly be less obtrusive and easier to implement without an ECG. Few studies have addressed this issue using a variety of complex approaches. This study proposes a novel approach to ECG-free heartbeat detection in SCG signals via template matching, based on normalized cross-correlation as heartbeats similarity measure. The algorithm was tested on the SCG signals acquired from 77 patients with valvular heart diseases, available from a public database. The performance of the proposed approach was assessed in terms of sensitivity and positive predictive value (PPV) of the heartbeat detection and accuracy of inter-beat intervals measurement. Sensitivity and PPV of 96% and 97%, respectively, were obtained by considering templates that included both systolic and diastolic complexes. Regression, correlation, and Bland-Altman analyses carried out on inter-beat intervals reported slope and intercept of 0.997 and 2.8 ms (R2 > 0.999), as well as non-significant bias and limits of agreement of ±7.8 ms. The results are comparable or superior to those achieved by far more complex algorithms, also based on artificial intelligence. The low computational burden of the proposed approach makes it suitable for direct implementation in wearable devices.


Asunto(s)
Inteligencia Artificial , Electrocardiografía , Humanos , Frecuencia Cardíaca , Algoritmos , Bases de Datos Factuales
4.
Sensors (Basel) ; 23(13)2023 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-37448046

RESUMEN

A heartbeat generates tiny mechanical vibrations, mainly due to the opening and closing of heart valves. These vibrations can be recorded by accelerometers and gyroscopes applied on a subject's chest. In particular, the local 3D linear accelerations and 3D angular velocities of the chest wall are referred to as seismocardiograms (SCG) and gyrocardiograms (GCG), respectively. These signals usually exhibit a low signal-to-noise ratio, as well as non-negligible amplitude and morphological changes due to changes in posture and the sensors' location, respiratory activity, as well as other sources of intra-subject and inter-subject variability. These factors make heartbeat detection a complex task; therefore, a reference electrocardiogram (ECG) lead is usually acquired in SCG and GCG studies to ensure correct localization of heartbeats. Recently, a template matching technique based on cross correlation has proven to be particularly effective in recognizing individual heartbeats in SCG signals. This study aims to verify the performance of this technique when applied on GCG signals. Tests were conducted on a public database consisting of SCG, GCG, and ECG signals recorded synchronously on 100 patients with valvular heart diseases. The results show that the template matching technique identified heartbeats in GCG signals with a sensitivity and positive predictive value (PPV) of 87% and 92%, respectively. Regression, correlation, and Bland-Altman analyses carried out on inter-beat intervals obtained from GCG and ECG (assumed as reference) reported a slope of 0.995, an intercept of 4.06 ms (R2 > 0.99), a Pearson's correlation coefficient of 0.9993, and limits of agreement of about ±13 ms with a negligible bias. A comparison with the results of a previous study obtained on SCG signals from the same database revealed that GCG enabled effective cardiac monitoring in significantly more patients than SCG (95 vs. 77). This result suggests that GCG could ensure more robust and reliable cardiac monitoring in patients with heart diseases with respect to SCG.


Asunto(s)
Procesamiento de Señales Asistido por Computador , Pared Torácica , Humanos , Frecuencia Cardíaca , Electrocardiografía , Monitoreo Fisiológico
5.
Sci Rep ; 13(1): 7768, 2023 05 12.
Artículo en Inglés | MEDLINE | ID: mdl-37173364

RESUMEN

Electromyography (EMG) is widely used in human-machine interfaces (HMIs) to measure muscle contraction by computing the EMG envelope. However, EMG is largely affected by powerline interference and motion artifacts. Boards that directly provide EMG envelope, without denoising the raw signal, are often unreliable and hinder HMIs performance. Sophisticated filtering provides high performance but is not viable when power and computational resources must be optimized. This study investigates the application of feed-forward comb (FFC) filters to remove both powerline interferences and motion artifacts from raw EMG. FFC filter and EMG envelope extractor can be implemented without computing any multiplication. This approach is particularly suitable for very low-cost, low-power platforms. The performance of the FFC filter was first demonstrated offline by corrupting clean EMG signals with powerline noise and motion artifacts. The correlation coefficients of the filtered signals envelopes and the true envelopes were greater than 0.98 and 0.94 for EMG corrupted by powerline noise and motion artifacts, respectively. Further tests on real, highly noisy EMG signals confirmed these achievements. Finally, the real-time operation of the proposed approach was successfully tested by implementation on a simple Arduino Uno board.


Asunto(s)
Contracción Muscular , Procesamiento de Señales Asistido por Computador , Humanos , Electromiografía , Contracción Muscular/fisiología , Artefactos , Algoritmos
6.
Sensors (Basel) ; 22(19)2022 Oct 06.
Artículo en Inglés | MEDLINE | ID: mdl-36236663

RESUMEN

Pulse waves (PWs) are mechanical waves that propagate from the ventricles through the whole vascular system as brisk enlargements of the blood vessels' lumens, caused by sudden increases in local blood pressure. Photoplethysmography (PPG) is one of the most widespread techniques employed for PW sensing due to its ability to measure blood oxygen saturation. Other sensors and techniques have been proposed to record PWs, and include applanation tonometers, piezoelectric sensors, force sensors of different kinds, and accelerometers. The performances of these sensors have been analyzed individually, and their results have been found not to be in good agreement (e.g., in terms of PW morphology and the physiological parameters extracted). Such a comparison has led to a deeper comprehension of their strengths and weaknesses, and ultimately, to the consideration that a multimodal approach accomplished via sensor fusion would lead to a more robust, reliable, and potentially more informative methodology for PW monitoring. However, apart from various multichannel and multi-site systems proposed in the literature, no true multimodal sensors for PW recording have been proposed yet that acquire PW signals simultaneously from the same measurement site. In this study, a true multimodal PW sensor is presented, which was obtained by integrating a piezoelectric forcecardiography (FCG) sensor and a PPG sensor, thus enabling simultaneous mechanical-optical measurements of PWs from the same site on the body. The novel sensor performance was assessed by measuring the finger PWs of five healthy subjects at rest. The preliminary results of this study showed, for the first time, that a delay exists between the PWs recorded simultaneously by the PPG and FCG sensors. Despite such a delay, the pulse waveforms acquired by the PPG and FCG sensors, along with their first and second derivatives, had very high normalized cross-correlation indices in excess of 0.98. Six well-established morphological parameters of the PWs were compared via linear regression, correlation, and Bland-Altman analyses, which showed that some of these parameters were not in good agreement for all subjects. The preliminary results of this proof-of-concept study must be confirmed in a much larger cohort of subjects. Further investigation is also necessary to shed light on the physical origin of the observed delay between optical and mechanical PW signals. This research paves the way for the development of true multimodal, wearable, integrated sensors and for potential sensor fusion approaches to improve the performance of PW monitoring at various body sites.


Asunto(s)
Oximetría , Fotopletismografía , Presión Sanguínea , Dedos , Frecuencia Cardíaca , Humanos , Oximetría/métodos , Fotopletismografía/métodos , Análisis de la Onda del Pulso/métodos
7.
Sensors (Basel) ; 22(10)2022 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-35632288

RESUMEN

During surgical procedures, real-time estimation of the current position of a metal lead within the patient's body is obtained by radiographic imaging. The inherent opacity of metal objects allows their visualization using X-ray fluoroscopic devices. Although fluoroscopy uses reduced radiation intensities, the overall X-ray dose delivered during prolonged exposure times poses risks to the safety of patients and physicians. This study proposes a potential alternative to real-time visualization of a lead inside the human body. In principle, by making a weak current flow through the lead and measuring the related magnetic field generated outside the body, it is possible to trace the position of the lead. This hypothesis was verified experimentally via two tests: one carried out on a curved copper wire in air and one carried out on a real pacemaker lead in a saline solution. In the second test, a pacemaker lead and a large return electrode were placed in a tank filled with a saline solution that reproduced the mean resistivity of the human torso. In both tests, a current flowed through the lead, which consisted of square pulses with short duration, to avoid any neuro-muscular stimulation effects in a real scenario. A small coil with a ferrite core was moved along a grid of points over a plastic sheet and placed just above the lead to sample the spatial amplitude distribution of the magnetic induction field produced by the lead. For each measurement point, the main coil axis was oriented along the x and y axes of the plane to estimate the related components of the magnetic induction field. The two matrices of measurements along the x and y axes were further processed to obtain an estimate of lead positioning. The preliminary results of this study support the scientific hypothesis since the positions of the leads were accurately estimated. This encourages to deepen the investigation and overcome some limitations of this feasibility study.


Asunto(s)
Cuerpo Humano , Solución Salina , Estudios de Factibilidad , Humanos , Campos Magnéticos , Magnetismo
8.
Bioengineering (Basel) ; 9(4)2022 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-35447727

RESUMEN

Seismocardiography (SCG) is largely regarded as the state-of-the-art technique for continuous, long-term monitoring of cardiac mechanical activity in wearable applications. SCG signals are acquired via small, lightweight accelerometers fixed on the chest. They provide timings of important cardiac events, such as heart valves openings and closures, thus allowing the estimation of cardiac time intervals of clinical relevance. Forcecardiography (FCG) is a novel technique that records the cardiac-induced vibrations of the chest wall by means of specific force sensors, which proved capable of monitoring respiration, heart sounds and infrasonic cardiac vibrations, simultaneously from a single contact point on the chest. A specific infrasonic component captures the heart walls displacements and looks very similar to the Apexcardiogram. This low-frequency component is not visible in SCG recordings, nor it can be extracted by simple filtering. In this study, a feasible way to extract this information from SCG signals is presented. The proposed approach is based on double integration of SCG. Numerical double integration is usually very prone to large errors, therefore a specific numerical procedure was devised. This procedure yields a new displacement signal (DSCG) that features a low-frequency component (LF-DSCG) very similar to that of the FCG (LF-FCG). Experimental tests were carried out using an FCG sensor and an off-the-shelf accelerometer firmly attached to each other and placed onto the precordial region. Simultaneous recordings were acquired from both sensors, together with an electrocardiogram lead (used as a reference). Quantitative morphological comparison confirmed the high similarity between LF-FCG and LF-DSCG (normalized cross-correlation index >0.9). Statistical analyses suggested that LF-DSCG, although achieving a fair sensitivity in heartbeat detection (about 90%), has not a very high consistency within the cardiac cycle, leading to inaccuracies in inter-beat intervals estimation. Future experiments with high-performance accelerometers and improved processing methods are envisioned to investigate the potential enhancement of the accuracy and reliability of the proposed method.

9.
Sci Rep ; 12(1): 6232, 2022 04 14.
Artículo en Inglés | MEDLINE | ID: mdl-35422059

RESUMEN

The aim of this study is to characterise the transient mechanical response and the neuromuscular activation of lower limb muscles in subjects undergoing Whole Body Vibration (WBV) at different frequencies while holding two static postures, with focus on muscles involved in shaping postural responses. Twenty-five participants underwent WBV at 15, 20, 25 and 30 Hz while in hack squat or on fore feet. Surface electromyography and soft tissue accelerations were collected from Gastrocnemius Lateralis (GL), Soleus (SOL) and Tibialis Anterior (TA) muscles. Estimated displacement at muscle bellies revealed a pattern never highlighted before that differed across frequencies and postures (p < 0.001). After stimulation starts, muscle oscillation peaks, drops and further stabilises, suggesting the occurrence of a neuromuscular activation to reduce the vibration-induced oscillation. The oscillation attenuation at the SOL muscle correlated with its increased activation (rho = 0.29, p < 0.001). Furthermore, only specific WBV settings led to a significant increase in muscle contraction: WBV-induced activation of SOL and GL was maximal in fore-feet (p < 0.05) and in response to higher frequencies (30 Hz vs 15 Hz, p < 0.001). The analysis of the mechanical dynamics of lower leg muscles highlights a resonant response to WBVs, that for the SOL correlates to the increased muscle activation. Despite differing across frequencies and postures, this resonant behaviour seems to discourage the use of dynamic exercises on vibrating platforms. As for the most efficient WBV combination, calf muscle response to WBVs is maximised if those muscles are already pre-contracted and the stimulation frequencies are in the 25-30 Hz range.


Asunto(s)
Pierna , Vibración , Electromiografía , Humanos , Pierna/fisiología , Extremidad Inferior , Músculo Esquelético/fisiología
10.
Bioengineering (Basel) ; 9(3)2022 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-35324778

RESUMEN

Forcecardiography (FCG) is a novel technique that measures the local forces induced on the chest wall by the mechanical activity of the heart. Specific piezoresistive or piezoelectric force sensors are placed on subjects' thorax to measure these very small forces. The FCG signal can be divided into three components: low-frequency FCG, high-frequency FCG (HF-FCG) and heart sound FCG. HF-FCG has been shown to share a high similarity with the Seismocardiogram (SCG), which is commonly acquired via small accelerometers and is mainly used to locate specific fiducial markers corresponding to essential events of the cardiac cycle (e.g., heart valves opening and closure, peaks of blood flow). However, HF-FCG has not yet been demonstrated to provide the timings of these markers with reasonable accuracy. This study addresses the detection of the aortic valve opening (AO) marker in FCG signals. To this aim, simultaneous recordings from FCG and SCG sensors were acquired, together with Electrocardiogram (ECG) recordings, from a few healthy subjects at rest, both during quiet breathing and apnea. The AO markers were located in both SCG and FCG signals to obtain pre-ejection periods (PEP) estimates, which were compared via statistical analyses. The PEPs estimated from FCG and SCG showed a strong linear relationship (r > 0.95) with a practically unit slope, and 95% of their differences were found to be distributed within ± 4.6 ms around small biases of approximately 1 ms, corresponding to percentage differences lower than 5% of the mean measured PEP. These preliminary results suggest that FCG can provide accurate AO timings and PEP estimates.

11.
Front Physiol ; 12: 725716, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34867438

RESUMEN

The precordial mechanical vibrations generated by cardiac contractions have a rich frequency spectrum. While the lowest frequencies can be palpated, the higher infrasonic frequencies are usually captured by the seismocardiogram (SCG) signal and the audible ones correspond to heart sounds. Forcecardiography (FCG) is a non-invasive technique that measures these vibrations via force sensing resistors (FSR). This study presents a new piezoelectric sensor able to record all heart vibrations simultaneously, as well as a respiration signal. The new sensor was compared to the FSR-based one to assess its suitability for FCG. An electrocardiogram (ECG) lead and a signal from an electro-resistive respiration band (ERB) were synchronously acquired as references on six healthy volunteers (4 males, 2 females) at rest. The raw signals from the piezoelectric and the FSR-based sensors turned out to be very similar. The raw signals were divided into four components: Forcerespirogram (FRG), Low-Frequency FCG (LF-FCG), High-Frequency FCG (HF-FCG) and heart sounds (HS-FCG). A beat-by-beat comparison of FCG and ECG signals was carried out by means of regression, correlation and Bland-Altman analyses, and similarly for respiration signals (FRG and ERB). The results showed that the infrasonic FCG components are strongly related to the cardiac cycle (R 2 > 0.999, null bias and Limits of Agreement (LoA) of ± 4.9 ms for HF-FCG; R 2 > 0.99, null bias and LoA of ± 26.9 ms for LF-FCG) and the FRG inter-breath intervals are consistent with ERB ones (R 2 > 0.99, non-significant bias and LoA of ± 0.46 s). Furthermore, the piezoelectric sensor was tested against an accelerometer and an electronic stethoscope: synchronous acquisitions were performed to quantify the similarity between the signals. ECG-triggered ensemble averages (synchronized with R-peaks) of HF-FCG and SCG showed a correlation greater than 0.81, while those of HS-FCG and PCG scored a correlation greater than 0.85. The piezoelectric sensor demonstrated superior performances as compared to the FSR, providing more accurate, beat-by-beat measurements. This is the first time that a single piezoelectric sensor demonstrated the ability to simultaneously capture respiration, heart sounds, an SCG-like signal (i.e., HF-FCG) and the LF-FCG signal, which may provide information on ventricular emptying and filling events. According to these preliminary results the novel piezoelectric FCG sensor stands as a promising device for accurate, unobtrusive, long-term monitoring of cardiorespiratory functions and paves the way for a wide range of potential applications, both in the research and clinical fields. However, these results should be confirmed by further analyses on a larger cohort of subjects, possibly including also pathological patients.

12.
Sensors (Basel) ; 21(22)2021 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-34833659

RESUMEN

Triage is the first interaction between a patient and a nurse/paramedic. This assessment, usually performed at Emergency departments, is a highly dynamic process and there are international grading systems that according to the patient condition initiate the patient journey. Triage requires an initial rapid assessment followed by routine checks of the patients' vitals, including respiratory rate, temperature, and pulse rate. Ideally, these checks should be performed continuously and remotely to reduce the workload on triage nurses; optimizing tools and monitoring systems can be introduced and include a wearable patient monitoring system that is not at the expense of the patient's comfort and can be remotely monitored through wireless connectivity. In this study, we assessed the suitability of a small ceramic piezoelectric disk submerged in a skin-safe silicone dome that enhances contact with skin, to detect wirelessly both respiration and cardiac events at several positions on the human body. For the purposes of this evaluation, we fitted the sensor with a respiratory belt as well as a single lead ECG, all acquired simultaneously. To complete Triage parameter collection, we also included a medical-grade contact thermometer. Performances of cardiac and respiratory events detection were assessed. The instantaneous heart and respiratory rates provided by the proposed sensor, the ECG and the respiratory belt were compared via statistical analyses. In all considered sensor positions, very high performances were achieved for the detection of both cardiac and respiratory events, except for the wrist, which provided lower performances for respiratory rates. These promising yet preliminary results suggest the proposed wireless sensor could be used as a wearable, hands-free monitoring device for triage assessment within emergency departments. Further tests are foreseen to assess sensor performances in real operating environments.


Asunto(s)
Triaje , Dispositivos Electrónicos Vestibles , Atención a la Salud , Electrocardiografía , Humanos , Monitoreo Fisiológico
13.
Sensors (Basel) ; 21(20)2021 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-34696076

RESUMEN

As a definition, Human-Machine Interface (HMI) enables a person to interact with a device. Starting from elementary equipment, the recent development of novel techniques and unobtrusive devices for biosignals monitoring paved the way for a new class of HMIs, which take such biosignals as inputs to control various applications. The current survey aims to review the large literature of the last two decades regarding biosignal-based HMIs for assistance and rehabilitation to outline state-of-the-art and identify emerging technologies and potential future research trends. PubMed and other databases were surveyed by using specific keywords. The found studies were further screened in three levels (title, abstract, full-text), and eventually, 144 journal papers and 37 conference papers were included. Four macrocategories were considered to classify the different biosignals used for HMI control: biopotential, muscle mechanical motion, body motion, and their combinations (hybrid systems). The HMIs were also classified according to their target application by considering six categories: prosthetic control, robotic control, virtual reality control, gesture recognition, communication, and smart environment control. An ever-growing number of publications has been observed over the last years. Most of the studies (about 67%) pertain to the assistive field, while 20% relate to rehabilitation and 13% to assistance and rehabilitation. A moderate increase can be observed in studies focusing on robotic control, prosthetic control, and gesture recognition in the last decade. In contrast, studies on the other targets experienced only a small increase. Biopotentials are no longer the leading control signals, and the use of muscle mechanical motion signals has experienced a considerable rise, especially in prosthetic control. Hybrid technologies are promising, as they could lead to higher performances. However, they also increase HMIs' complexity, so their usefulness should be carefully evaluated for the specific application.


Asunto(s)
Robótica , Realidad Virtual , Humanos , Encuestas y Cuestionarios
14.
Bioengineering (Basel) ; 8(9)2021 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-34562951

RESUMEN

Hand prostheses partially restore hand appearance and functionalities. In particular, 3D printers have provided great opportunities by simplifying the manufacturing process and reducing costs. The "Federica" hand is 3D-printed and equipped with a single servomotor, which synergically actuates its five fingers by inextensible tendons; no springs are used for hand opening. A differential mechanical system simultaneously distributes the motor force on each finger in predefined portions. The proportional control of hand closure/opening is achieved by monitoring muscle contraction by means of a thin force sensor, as an alternative to EMG. The electrical current of the servomotor is monitored to provide sensory feedback of the grip force, through a small vibration motor. A simple Arduino board was adopted as the processing unit. A closed-chain, differential mechanism guarantees efficient transfer of mechanical energy and a secure grasp of any object, regardless of its shape and deformability. The force sensor offers some advantages over the EMG: it does not require any electrical contact or signal processing to monitor muscle contraction intensity. The activation speed (about half a second) is high enough to allow the user to grab objects on the fly. The cost of the device is less then 100 USD. The "Federica" hand has proved to be a lightweight, low-cost and extremely efficient prosthesis. It is now available as an open-source project (CAD files and software can be downloaded from a public repository), thus allowing everyone to use the "Federica" hand and customize or improve it.

15.
Sensors (Basel) ; 21(12)2021 Jun 09.
Artículo en Inglés | MEDLINE | ID: mdl-34207899

RESUMEN

In the last few decades, a number of wearable systems for respiration monitoring that help to significantly reduce patients' discomfort and improve the reliability of measurements have been presented. A recent research trend in biosignal acquisition is focusing on the development of monolithic sensors for monitoring multiple vital signs, which could improve the simultaneous recording of different physiological data. This study presents a performance analysis of respiration monitoring performed via forcecardiography (FCG) sensors, as compared to ECG-derived respiration (EDR) and electroresistive respiration band (ERB), which was assumed as the reference. FCG is a novel technique that records the cardiac-induced vibrations of the chest wall via specific force sensors, which provide seismocardiogram-like information, along with a novel component that seems to be related to the ventricular volume variations. Simultaneous acquisitions were obtained from seven healthy subjects at rest, during both quiet breathing and forced respiration at higher and lower rates. The raw FCG sensor signals featured a large, low-frequency, respiratory component (R-FCG), in addition to the common FCG signal. Statistical analyses of R-FCG, EDR and ERB signals showed that FCG sensors ensure a more sensitive and precise detection of respiratory acts than EDR (sensitivity: 100% vs. 95.8%, positive predictive value: 98.9% vs. 92.5%), as well as a superior accuracy and precision in interbreath interval measurement (linear regression slopes and intercepts: 0.99, 0.026 s (R2 = 0.98) vs. 0.98, 0.11 s (R2 = 0.88), Bland-Altman limits of agreement: ±0.61 s vs. ±1.5 s). This study represents a first proof of concept for the simultaneous recording of respiration signals and forcecardiograms with a single, local, small, unobtrusive, cheap sensor. This would extend the scope of FCG to monitoring multiple vital signs, as well as to the analysis of cardiorespiratory interactions, also paving the way for the continuous, long-term monitoring of patients with heart and pulmonary diseases.


Asunto(s)
Electrocardiografía , Respiración , Corazón , Humanos , Monitoreo Fisiológico , Reproducibilidad de los Resultados , Procesamiento de Señales Asistido por Computador
16.
Biomed Eng Online ; 20(1): 36, 2021 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-33827586

RESUMEN

BACKGROUND: Low-dose X-ray images have become increasingly popular in the last decades, due to the need to guarantee the lowest reasonable patient's exposure. Dose reduction causes a substantial increase of quantum noise, which needs to be suitably suppressed. In particular, real-time denoising is required to support common interventional fluoroscopy procedures. The knowledge of noise statistics provides precious information that helps to improve denoising performances, thus making noise estimation a crucial task for effective denoising strategies. Noise statistics depend on different factors, but are mainly influenced by the X-ray tube settings, which may vary even within the same procedure. This complicates real-time denoising, because noise estimation should be repeated after any changes in tube settings, which would be hardly feasible in practice. This work investigates the feasibility of an a priori characterization of noise for a single fluoroscopic device, which would obviate the need for inferring noise statics prior to each new images acquisition. The noise estimation algorithm used in this study was tested in silico to assess its accuracy and reliability. Then, real sequences were acquired by imaging two different X-ray phantoms via a commercial fluoroscopic device at various X-ray tube settings. Finally, noise estimation was performed to assess the matching of noise statistics inferred from two different sequences, acquired independently in the same operating conditions. RESULTS: The noise estimation algorithm proved capable of retrieving noise statistics, regardless of the particular imaged scene, also achieving good results even by using only 10 frames (mean percentage error lower than 2%). The tests performed on the real fluoroscopic sequences confirmed that the estimated noise statistics are independent of the particular informational content of the scene from which they have been inferred, as they turned out to be consistent in sequences of the two different phantoms acquired independently with the same X-ray tube settings. CONCLUSIONS: The encouraging results suggest that an a priori characterization of noise for a single fluoroscopic device is feasible and could improve the actual implementation of real-time denoising strategies that take advantage of noise statistics to improve the trade-off between noise reduction and details preservation.


Asunto(s)
Fluoroscopía , Relación Señal-Ruido , Algoritmos , Fantasmas de Imagen , Reproducibilidad de los Resultados
17.
Int J Comput Assist Radiol Surg ; 16(4): 543-554, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33687667

RESUMEN

PURPOSE: People with drug-refractory epilepsy are potential candidates for surgery. In many cases, epileptogenic zone localization requires intracranial investigations, e.g., via ElectroCorticoGraphy (ECoG), which uses subdural electrodes to map eloquent areas of large cortical regions. Precise electrodes localization on cortical surface is mandatory to delineate the seizure onset zone. Simple thresholding operations performed on patients' computed tomography (CT) volumes recognize electrodes but also other metal objects (e.g., wires, stitches), which need to be manually removed. A new automated method based on shape analysis is proposed, which provides substantially improved performances in ECoG electrodes recognition. METHODS: The proposed method was retrospectively tested on 24 CT volumes of subjects with drug-refractory focal epilepsy, presenting a large number (> 1700) of round platinum electrodes. After CT volume thresholding, six geometric features of voxel clusters (volume, symmetry axes lengths, circularity and cylinder similarity) were used to recognize the actual electrodes among all metal objects via a Gaussian support vector machine (G-SVM). The proposed method was further tested on seven CT volumes from a public repository. Simultaneous recognition of depth and ECoG electrodes was also investigated on three additional CT volumes, containing penetrating depth electrodes. RESULTS: The G-SVM provided a 99.74% mean classification accuracy across all 24 single-patient datasets, as well as on the combined dataset. High accuracies were obtained also on the CT volumes from public repository (98.27% across all patients, 99.68% on combined dataset). An overall accuracy of 99.34% was achieved for the recognition of depth and ECoG electrodes. CONCLUSIONS: The proposed method accomplishes automated ECoG electrodes localization with unprecedented accuracy and can be easily implemented into existing software for preoperative analysis process. The preliminary yet surprisingly good results achieved for the simultaneous depth and ECoG electrodes recognition are encouraging. Ethical approval n°NCT04479410 by "IRCCS Neuromed" (Pozzilli, Italy), 30th July 2020.


Asunto(s)
Epilepsia Refractaria/diagnóstico por imagen , Electrocorticografía/métodos , Electrodos Implantados , Electroencefalografía/métodos , Tomografía Computarizada por Rayos X/métodos , Adulto , Electrodos , Femenino , Humanos , Procesamiento de Imagen Asistido por Computador , Masculino , Persona de Mediana Edad , Distribución Normal , Reconocimiento de Normas Patrones Automatizadas , Estudios Retrospectivos , Programas Informáticos , Máquina de Vectores de Soporte , Adulto Joven
18.
Parasitology ; 148(4): 427-434, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33213534

RESUMEN

The Kubic FLOTAC microscope (KFM) is a compact, low-cost, versatile and portable digital microscope designed to analyse fecal specimens prepared with Mini-FLOTAC or FLOTAC, in both field and laboratory settings. In this paper, we present the characteristics of the KFM along with its first validation for fecal egg count (FEC) of gastrointestinal nematodes (GINs) in cattle. For this latter purpose, a study was performed on 30 fecal samples from cattle experimentally infected by GINs to compare the performance of Mini-FLOTAC either using a traditional optical microscope (OM) or the KFM. The results of the comparison showed a substantial agreement (concordance correlation coefficient = 0.999), with a very low discrepancy (−0.425 ± 7.370) between the two microscopes. Moreover, the KFM captured images comparable with the view provided by the traditional OM. Therefore, the combination of sensitive, accurate, precise and standardized FEC techniques, as the Mini-FLOTAC, with a reliable automated system, will permit the real-time observation and quantification of parasitic structures, thanks also to artificial intelligence software, that is under development. For these reasons, the KFM is a promising tool for an accurate and efficient FEC to improve parasite diagnosis and to assist new generations of operators in veterinary and public health.


Asunto(s)
Enfermedades de los Bovinos/diagnóstico , Heces/parasitología , Microscopía/instrumentación , Microscopía/métodos , Infecciones por Nematodos/veterinaria , Recuento de Huevos de Parásitos/instrumentación , Animales , Bovinos , Enfermedades de los Bovinos/parasitología , Imagenología Tridimensional/veterinaria , Infecciones por Nematodos/diagnóstico , Infecciones por Nematodos/parasitología , Estadísticas no Paramétricas
19.
Diagnostics (Basel) ; 10(10)2020 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-33066350

RESUMEN

There are two surgical approaches to performing total hip arthroplasty (THA): a cemented or uncemented type of prosthesis. The choice is usually based on the experience of the orthopaedic surgeon and on parameters such as the age and gender of the patient. Using machine learning (ML) techniques on quantitative biomechanical and bone quality data extracted from computed tomography, electromyography and gait analysis, the aim of this paper was, firstly, to help clinicians use patient-specific biomarkers from diagnostic exams in the prosthetic decision-making process. The second aim was to evaluate patient long-term outcomes by predicting the bone mineral density (BMD) of the proximal and distal parts of the femur using advanced image processing analysis techniques and ML. The ML analyses were performed on diagnostic patient data extracted from a national database of 51 THA patients using the Knime analytics platform. The classification analysis achieved 93% accuracy in choosing the type of prosthesis; the regression analysis on the BMD data showed a coefficient of determination of about 0.6. The start and stop of the electromyographic signals were identified as the best predictors. This study shows a patient-specific approach could be helpful in the decision-making process and provide clinicians with information regarding the follow up of patients.

20.
Sensors (Basel) ; 20(14)2020 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-32668584

RESUMEN

This paper presents forcecardiography (FCG), a novel technique to measure local, cardiac-induced vibrations onto the chest wall. Since the 19th century, several techniques have been proposed to detect the mechanical vibrations caused by cardiovascular activity, the great part of which was abandoned due to the cumbersome instrumentation involved. The recent availability of unobtrusive sensors rejuvenated the research field with the most currently established technique being seismocardiography (SCG). SCG is performed by placing accelerometers onto the subject's chest and provides information on major events of the cardiac cycle. The proposed FCG measures the cardiac-induced vibrations via force sensors placed onto the subject's chest and provides signals with a richer informational content as compared to SCG. The two techniques were compared by analysing simultaneous recordings acquired by means of a force sensor, an accelerometer and an electrocardiograph (ECG). The force sensor and the accelerometer were rigidly fixed to each other and fastened onto the xiphoid process with a belt. The high-frequency (HF) components of FCG and SCG were highly comparable (r > 0.95) although lagged. The lag was estimated by cross-correlation and resulted in about tens of milliseconds. An additional, large, low-frequency (LF) component, associated with ventricular volume variations, was observed in FCG, while not being visible in SCG. The encouraging results of this feasibility study suggest that FCG is not only able to acquire similar information as SCG, but it also provides additional information on ventricular contraction. Further analyses are foreseen to confirm the advantages of FCG as a technique to improve the scope and significance of pervasive cardiac monitoring.


Asunto(s)
Corazón/fisiología , Monitoreo Fisiológico/instrumentación , Pared Torácica , Vibración , Acelerometría , Electrocardiografía , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...