Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 507
Filtrar
1.
Commun Biol ; 7(1): 1361, 2024 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-39433574

RESUMEN

Sepsis-induced acute lung injury (ALI), characterized by severe hypoxemia and pulmonary leakage, remains a leading cause of mortality in intensive care units. The exacerbation of ALI during sepsis is largely attributed to uncontrolled inflammatory responses and endothelial dysfunction. Emerging evidence suggests an important role of Z-DNA binding protein 1 (ZBP1) as a sensor in innate immune to drive inflammatory signaling and cell death during infections. However, the role of ZBP1 in sepsis-induced ALI has yet to be defined. We utilized ZBP1 knockout mice and combined single-cell RNA sequencing with experimental validation to investigate ZBP1's roles in the regulation of macrophages and lung endothelial cells during sepsis. We demonstrate that in sepsis, ZBP1 deficiency in macrophages reduces mitochondrial damage and inhibits glycolysis, thereby altering the metabolic status of macrophages. Consequently, this metabolic shift leads to a reduction in the differentiation of macrophages into pro-inflammatory states and decreases macrophage pyroptosis triggered by activation of the NLRP3 inflammasome. These changes significantly weaken the inflammatory signaling pathways between macrophages and endothelial cells and alleviate endothelial dysfunction and cellular damage. These findings reveal important roles for ZBP1 in mediating multiple pathological processes involved in sepsis-induced ALI by modulating the functional states of macrophages and endothelial cells, thereby highlighting its potential as a promising therapeutic target.


Asunto(s)
Lesión Pulmonar Aguda , Macrófagos , Proteínas de Unión al ARN , Sepsis , Animales , Masculino , Ratones , Lesión Pulmonar Aguda/metabolismo , Lesión Pulmonar Aguda/etiología , Lesión Pulmonar Aguda/patología , Lesión Pulmonar Aguda/genética , Modelos Animales de Enfermedad , Células Endoteliales/metabolismo , Inflamasomas/metabolismo , Macrófagos/metabolismo , Macrófagos/inmunología , Ratones Endogámicos C57BL , Ratones Noqueados , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/genética , Piroptosis , Proteínas de Unión al ARN/metabolismo , Proteínas de Unión al ARN/genética , Sepsis/complicaciones , Sepsis/metabolismo , Sepsis/genética , Transducción de Señal
2.
Mil Med Res ; 11(1): 71, 2024 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-39465383

RESUMEN

BACKGROUND: Sepsis is often accompanied by lactic acidemia and acute lung injury (ALI). Clinical studies have established that high serum lactate levels are associated with increased mortality rates in septic patients. We further observed a significant correlation between the levels of cold-inducible RNA-binding protein (CIRP) in plasma and bronchoalveolar lavage fluid (BALF), as well as lactate levels, and the severity of post-sepsis ALI. The underlying mechanism, however, remains elusive. METHODS: C57BL/6 wild type (WT), Casp8-/-, Ripk3-/-, and Zbp1-/- mice were subjected to the cecal ligation and puncture (CLP) sepsis model. In this model, we measured intra-macrophage CIRP lactylation and the subsequent release of CIRP. We also tracked the internalization of extracellular CIRP (eCIRP) in pulmonary vascular endothelial cells (PVECs) and its interaction with Z-DNA binding protein 1 (ZBP1). Furthermore, we monitored changes in ZBP1 levels in PVECs and the consequent activation of cell death pathways. RESULTS: In the current study, we demonstrate that lactate, accumulating during sepsis, promotes the lactylation of CIRP in macrophages, leading to the release of CIRP. Once eCIRP is internalized by PVEC through a Toll-like receptor 4 (TLR4)-mediated endocytosis pathway, it competitively binds to ZBP1 and effectively blocks the interaction between ZBP1 and tripartite motif containing 32 (TRIM32), an E3 ubiquitin ligase targeting ZBP1 for proteasomal degradation. This interference mechanism stabilizes ZBP1, thereby enhancing ZBP1-receptor-interacting protein kinase 3 (RIPK3)-dependent PVEC PANoptosis, a form of cell death involving the simultaneous activation of multiple cell death pathways, thereby exacerbating ALI. CONCLUSIONS: These findings unveil a novel pathway by which lactic acidemia promotes macrophage-derived eCIRP release, which, in turn, mediates ZBP1-dependent PVEC PANoptosis in sepsis-induced ALI. This finding offers new insights into the molecular mechanisms driving sepsis-related pulmonary complications and provides potential new therapeutic strategies.


Asunto(s)
Células Endoteliales , Ratones Endogámicos C57BL , Proteínas de Unión al ARN , Sepsis , Animales , Ratones , Sepsis/complicaciones , Sepsis/fisiopatología , Proteínas de Unión al ARN/metabolismo , Células Endoteliales/metabolismo , Ácido Láctico/sangre , Ácido Láctico/metabolismo , Muerte Celular/fisiología , Modelos Animales de Enfermedad , Masculino , Pulmón/fisiopatología
3.
Cancer Res Commun ; 4(10): 2766-2782, 2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-39356141
5.
Shock ; 2024 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-39178207

RESUMEN

BACKGROUND: Critical illness stemming from severe traumatic injury is a leading cause of morbidity and mortality worldwide, and involves the dysfunction of multiple organ systems, driven, at least in part, by dysregulated inflammation. We and others have shown a key role for genetic predisposition to dysregulated inflammation and downstream adverse critical illness outcomes. Recently, we demonstrated an association among genotypes at the single-nucleotide polymorphism (SNP) rs10404939 in LYPD4, dysregulated systemic inflammation, and adverse clinical outcomes in a broad sample of ~1000 critically ill patients. METHODS: We sought to gain mechanistic insights into the role of LYPD4 in critical illness by bioinformatically analyzing potential interactions among rs10404939 and other SNPs. We analyzed a dataset of common (i.e., not rare) SNPs previously defined to be associated with genotype-specific, significantly dysregulated systemic inflammation trajectories in trauma patients, in comparison to a control dataset of common SNPs determined to exhibit an absence of genotype-specific inflammatory responses. RESULTS: In the control dataset, this analysis implicated SNPs associated with phosphatidylinositol and various membrane transport proteins, but not LYPD4. In the patient subset with genotypically dysregulated inflammation, our analysis suggested the co-localization to lipid rafts of LYPD4 and the complement receptor CD55, as well as the neurally related CNTNAP2 and RIMS4. Segregation of trauma patients based on genotype of the CD55 SNP rs11117564 showed distinct trajectories of organ dysfunction and systemic inflammation despite similar demographics and injury characteristics. CONCLUSION: These analyses define novel interactions among SNPs that could enhance our understanding of the response to traumatic injury and critical illness.

6.
Front Immunol ; 15: 1337384, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38827745

RESUMEN

Fibroblastic reticular cells (FRCs) are a subpopulation of stromal cells modulating the immune environments in health and disease. We have previously shown that activation of TLR9 signaling in FRC in fat-associated lymphoid clusters (FALC) regulate peritoneal immunity via suppressing immune cell recruitment and peritoneal resident macrophage (PRM) retention. However, FRCs are heterogeneous across tissues and organs. The functions of each FRC subset and the regulation of TLR9 in distinct FRC subsets are unknown. Here, we confirmed that specific deletion of TLR9 in FRC improved bacterial clearance and survival during peritoneal infection. Furthermore, using single-cell RNA sequencing, we found two subsets of FRCs (CD55hi and CD55lo) in the mesenteric FALC. The CD55hi FRCs were enriched in gene expression related to extracellular matrix formation. The CD55lo FRCs were enriched in gene expression related to immune response. Interestingly, we found that TLR9 is dominantly expressed in the CD55lo subset. Activation of TLR9 signaling suppressed proliferation, cytokine production, and retinoid metabolism in the CD55lo FRC, but not CD55hi FRC. Notably, we found that adoptive transfer of Tlr9 -/-CD55lo FRC from mesenteric FALC more effectively improved the survival during peritonitis compared with WT-FRC or Tlr9 -/-CD55hi FRC. Furthermore, we identified CD55hi and CD55lo subsets in human adipose tissue-derived FRC and confirmed the suppressive effect of TLR9 on the proliferation and cytokine production in the CD55lo subset. Therefore, inhibition of TLR9 in the CD55lo FRCs from adipose tissue could be a useful strategy to improve the therapeutic efficacy of FRC-based therapy for peritonitis.


Asunto(s)
Fibroblastos , Peritonitis , Transducción de Señal , Receptor Toll-Like 9 , Animales , Humanos , Masculino , Ratones , Modelos Animales de Enfermedad , Fibroblastos/metabolismo , Fibroblastos/inmunología , Inmunomodulación , Ratones Endogámicos C57BL , Ratones Noqueados , Peritonitis/inmunología , Peritonitis/metabolismo , Receptor Toll-Like 9/metabolismo , Receptor Toll-Like 9/genética
7.
J Leukoc Biol ; 116(4): 854-863, 2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-38713770

RESUMEN

Polymorphonuclear neutrophil (PMN) infiltration at inflammatory site plays a critical role in inflammation. PMN reverse migration (rM) describes the phenomenon that PMNs migrate away from inflammatory site back into the vasculature, and its role within inflammatory scenarios remains to be fully determined. This study aimed to investigate the mechanism underlying PMN rM and its role in inflammation. First, we demonstrated PMN rM in a mouse model of lipopolysaccharide-induced acute lung inflammation. By single-cell RNA sequencing, we demonstrated that reverse migrated (rM-ed) PMNs in blood expressed a high level of immune-responsive gene 1 (Irg1), the encoding gene of cis-aconitate decarboxylase (ACOD1). Using a mouse air pouch model, which enabled us to directly track rM-ed PMNs in vivo, we detected higher expression of ACOD1 in the rM-ed PMNs in circulation. Furthermore, mice with Irg1 knockout exhibited decreased PMN rM and higher levels of inflammatory cytokine in inflammatory site. Mechanistically, we found that itaconate, the product of ACOD1 catalyzation, decreased PMN ICAM-1 expression at the inflammation site. Furthermore, inflammatory site showed a high level of shed Cd11a, the ligand of ICAM-1. Neutralization of either ICAM-1 or Cd11a led to increased PMN rM. These findings suggest that the binding of ICAM-1 and shed Cd11a serves as a retaining force to hold PMNs in the site of inflammation, and ACOD1-decreased PMN surface expression of ICAM-1 weakens the retaining force, promoting PMNs to leave the inflammatory site. These results indicate a regulatory role of IRG1 in PMN rM and subsequent contributions to inflammation resolution.


Asunto(s)
Carboxiliasas , Inflamación , Neutrófilos , Animales , Neutrófilos/metabolismo , Neutrófilos/inmunología , Ratones , Carboxiliasas/genética , Carboxiliasas/metabolismo , Inflamación/metabolismo , Inflamación/patología , Movimiento Celular , Ratones Noqueados , Ratones Endogámicos C57BL , Lipopolisacáridos/farmacología , Molécula 1 de Adhesión Intercelular/metabolismo , Molécula 1 de Adhesión Intercelular/genética , Modelos Animales de Enfermedad , Hidroliasas
8.
Cell Rep ; 43(5): 114237, 2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38753484

RESUMEN

Cardiac dysfunction, an early complication of endotoxemia, is the major cause of death in intensive care units. No specific therapy is available at present for this cardiac dysfunction. Here, we show that the N-terminal gasdermin D (GSDMD-N) initiates mitochondrial apoptotic pore and cardiac dysfunction by directly interacting with cardiolipin oxidized by complex II-generated reactive oxygen species (ROS) during endotoxemia. Caspase-4/11 initiates GSDMD-N pores that are subsequently amplified by the upregulation and activation of NLRP3 inflammation through further generation of ROS. GSDMD-N pores form prior to BAX and VDAC1 apoptotic pores and further incorporate into BAX and VDAC1 oligomers within mitochondria membranes to exacerbate the apoptotic process. Our findings identify oxidized cardiolipin as the definitive target of GSDMD-N in mitochondria of cardiomyocytes during endotoxin-induced myocardial dysfunction (EIMD), and modulation of cardiolipin oxidation could be a therapeutic target early in the disease process to prevent EIMD.


Asunto(s)
Cardiolipinas , Endotoxemia , Péptidos y Proteínas de Señalización Intracelular , Miocitos Cardíacos , Oxidación-Reducción , Proteínas de Unión a Fosfato , Especies Reactivas de Oxígeno , Animales , Humanos , Ratones , Apoptosis , Cardiolipinas/metabolismo , Endotoxemia/metabolismo , Endotoxemia/patología , Gasderminas , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Ratones Endogámicos C57BL , Mitocondrias/metabolismo , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/patología , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Proteínas de Unión a Fosfato/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Complejo II de Transporte de Electrones/metabolismo
9.
Sci Rep ; 14(1): 2747, 2024 02 02.
Artículo en Inglés | MEDLINE | ID: mdl-38302619

RESUMEN

Injury mechanism is an important consideration when conducting clinical trials in trauma. Mechanisms of injury may be associated with differences in mortality risk and immune response to injury, impacting the potential success of the trial. We sought to characterize clinical and endothelial cell damage marker differences across blunt and penetrating injured patients enrolled in three large, prehospital randomized trials which focused on hemorrhagic shock. In this secondary analysis, patients with systolic blood pressure < 70 or systolic blood pressure < 90 and heart rate > 108 were included. In addition, patients with both blunt and penetrating injuries were excluded. The primary outcome was 30-day mortality. Mortality was characterized using Kaplan-Meier and Cox proportional-hazards models. Generalized linear models were used to compare biomarkers. Chi squared tests and Wilcoxon rank-sum were used to compare secondary outcomes. We characterized data of 696 enrolled patients that met all secondary analysis inclusion criteria. Blunt injured patients had significantly greater 24-h (18.6% vs. 10.7%, log rank p = 0.048) and 30-day mortality rates (29.7% vs. 14.0%, log rank p = 0.001) relative to penetrating injured patients with a different time course. After adjusting for confounders, blunt mechanism of injury was independently predictive of mortality at 30-days (HR 1.84, 95% CI 1.06-3.20, p = 0.029), but not 24-h (HR 1.65, 95% CI 0.86-3.18, p = 0.133). Elevated admission levels of endothelial cell damage markers, VEGF, syndecan-1, TM, S100A10, suPAR and HcDNA were associated with blunt mechanism of injury. Although there was no difference in multiple organ failure (MOF) rates across injury mechanism (48.4% vs. 42.98%, p = 0.275), blunt injured patients had higher Denver MOF score (p < 0.01). The significant increase in 30-day mortality and endothelial cell damage markers in blunt injury relative to penetrating injured patients highlights the importance of considering mechanism of injury within the inclusion and exclusion criteria of future clinical trials.


Asunto(s)
Servicios Médicos de Urgencia , Heridas no Penetrantes , Heridas Penetrantes , Humanos , Heridas Penetrantes/complicaciones , Heridas no Penetrantes/complicaciones , Modelos de Riesgos Proporcionales , Células Endoteliales , Estudios Retrospectivos
10.
Kidney Int ; 105(3): 508-523, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38163633

RESUMEN

Sepsis-induced acute kidney injury (S-AKI) is highly lethal, and effective drugs for treatment are scarce. Previously, we reported the robust therapeutic efficacy of fibroblastic reticular cells (FRCs) in sepsis. Here, we demonstrate the ability of FRC-derived exosomes (FRC-Exos) to improve C57BL/6 mouse kidney function following cecal ligation and puncture-induced sepsis. In vivo imaging confirmed that FRC-Exos homed to injured kidneys. RNA-Seq analysis of FRC-Exo-treated primary kidney tubular cells (PKTCs) revealed that FRC-Exos influenced PKTC fate in the presence of lipopolysaccharide (LPS). FRC-Exos promoted kinase PINK1-dependent mitophagy and inhibited NLRP3 inflammasome activation in LPS-stimulated PKTCs. To dissect the mechanism underlying the protective role of Exos in S-AKI, we examined the proteins within Exos by mass spectrometry and found that CD5L was the most upregulated protein in FRC-Exos compared to macrophage-derived Exos. Recombinant CD5L treatment in vitro attenuated kidney cell swelling and surface bubble formation after LPS stimulation. FRCs were infected with a CD5L lentivirus to increase CD5L levels in FRC-Exos, which were then modified in vitro with the kidney tubular cell targeting peptide LTH, a peptide that binds to the biomarker protein kidney injury molecule-1 expressed on injured tubule cells, to enhance binding specificity. Compared with an equivalent dose of recombinant CD5L, the modified CD5L-enriched FRC-Exos selectively bound PKTCs, promoted kinase PINK-ubiquitin ligase Parkin-mediated mitophagy, inhibiting pyroptosis and improved kidney function by hindering NLRP3 inflammasome activation, thereby improving the sepsis survival rate. Thus, strategies to modify FRC-Exos could be a new avenue in developing therapeutics against kidney injury.


Asunto(s)
Lesión Renal Aguda , Exosomas , Sepsis , Ratones , Animales , Inflamasomas/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Exosomas/metabolismo , Lipopolisacáridos , Ratones Endogámicos C57BL , Lesión Renal Aguda/metabolismo , Sepsis/complicaciones , Sepsis/metabolismo
11.
J Am Coll Surg ; 238(5): 924-941, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38095316

RESUMEN

BACKGROUND: Major surgery triggers trauma-like stress responses linked to age, surgery duration, and blood loss, resembling polytrauma. This similarity suggests elective surgery as a surrogate model for studying polytrauma immune responses. We investigated stress responses across age groups and compared them with those of polytrauma patients. STUDY DESIGN: Patients undergoing major spinal reconstruction surgery were divided into older (age >65 years, n = 5) and young (age 18 to 39 years, n = 6) groups. A comparison group consisted of matched trauma patients (n = 8). Blood samples were collected before, during, and after surgery. Bone marrow mononuclear cells and peripheral blood mononuclear cells were analyzed using cellular indexing of transcriptomes and epitopes sequencing or single-cell RNA sequencing. Plasma was subjected to dual-platform proteomic analysis (SomaLogic and O-link). RESULTS: Response to polytrauma was highest within 4 hours. By comparison, the response to surgery was highest at 24 hours. Both insults triggered significant changes in cluster of differentiation 14 monocytes, with increased inflammation and lower major histocompatibility complex-class 2 expression. Older patient's cluster of differentiation 14 monocytes displayed higher inflammation and less major histocompatibility complex-class 2 suppression; a trend was also seen in bone marrow mononuclear cells. Although natural killer cells were markedly activated after polytrauma, they were suppressed after surgery, especially in older patients. In plasma, innate immunity proteins dominated at 24 hours, shifting to adaptive immunity proteins by 6 weeks with heightened inflammation in older patients. Senescence-associated secretory phenotype proteins were higher in older patients at baseline and further elevated during and after surgery. CONCLUSIONS: Although both major surgery and polytrauma initiate immune and stress responses, substantial differences exist in timing and cellular profiles, suggesting major elective surgery is not a suitable surrogate for the polytrauma response. Nonetheless, distinct responses in young vs older patients highlight the utility of elective spinal in studying patient-specific factors affecting outcomes after major elective surgery.


Asunto(s)
Traumatismo Múltiple , Cirugía Plástica , Humanos , Anciano , Adolescente , Adulto Joven , Adulto , Transcriptoma , Leucocitos Mononucleares , Proteómica , Envejecimiento , Traumatismo Múltiple/cirugía , Perfilación de la Expresión Génica , Inmunidad , Inflamación
12.
Ann Surg ; 279(2): 231-239, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-37916404

RESUMEN

OBJECTIVE: To create a blueprint for surgical department leaders, academic institutions, and funding agencies to optimally support surgeon-scientists. BACKGROUND: Scientific contributions by surgeons have been transformative across many medical disciplines. Surgeon-scientists provide a distinct approach and mindset toward key scientific questions. However, lack of institutional support, pressure for increased clinical productivity, and growing administrative burden are major challenges for the surgeon-scientist, as is the time-consuming nature of surgical training and practice. METHODS: An American Surgical Association Research Sustainability Task Force was created to outline a blueprint for sustainable science in surgery. Leaders from top NIH-sponsored departments of surgery engaged in video and in-person meetings between January and April 2023. A strength, weakness, opportunities, threats analysis was performed, and workgroups focused on the roles of surgeons, the department and institutions, and funding agencies. RESULTS: Taskforce recommendations: (1) SURGEONS: Growth mindset : identifying research focus, long-term planning, patience/tenacity, team science, collaborations with disparate experts; Skill set : align skills and research, fill critical skill gaps, develop team leadership skills; DEPARTMENT OF SURGERY (DOS): (2) MENTORSHIP: Chair : mentor-mentee matching/regular meetings/accountability, review of junior faculty progress, mentorship training requirement, recognition of mentorship (eg, relative value unit equivalent, awards; Mentor: dedicated time, relevant scientific expertise, extramural funding, experience and/or trained as mentor, trusted advisor; Mentee : enthusiastic/eager, proactive, open to feedback, clear about goals; (3) FINANCIAL SUSTAINABILITY: diversification of research portfolio, identification of matching funding sources, departmental resource awards (eg, T-/P-grants), leveraging of institutional resources, negotiation of formalized/formulaic funds flow investment from academic medical center toward science, philanthropy; (4) STRUCTURAL/STRATEGIC SUPPORT: Structural: grants administrative support, biostats/bioinformatics support, clinical trial and research support, regulatory support, shared departmental laboratory space/equipment; Strategic: hiring diverse surgeon-scientist/scientists faculty across DOS, strategic faculty retention/ recruitment, philanthropy, career development support, progress tracking, grant writing support, DOS-wide research meetings, regular DOS strategic research planning; (5) COMMUNITY AND CULTURE: Community: right mix of faculty, connection surgeon with broad scientific community; Culture: building research infrastructure, financial support for research, projecting importance of research (awards, grand rounds, shoutouts); (6) THE ROLE OF INSTITUTIONS: Foundation: research space co-location, flexible start-up packages, courses/mock study section, awards, diverse institutional mentorship teams; Nurture: institutional infrastructure, funding (eg, endowed chairs), promotion friendly toward surgeon-scientists, surgeon-scientists in institutional leadership positions; Expectations: RVU target relief, salary gap funding, competitive starting salaries, longitudinal salary strategy; (7) THE ROLE OF FUNDING AGENCIES: change surgeon research training paradigm, offer alternate awards to K-awards, increasing salary cap to reflect market reality, time extension for surgeon early-stage investigator status, surgeon representation on study section, focused award strategies for professional societies/foundations. CONCLUSIONS: Authentic recommitment from surgeon leaders with intentional and ambitious actions from institutions, corporations, funders, and society is essential in order to reap the essential benefits of surgeon-scientists toward advancements of science.


Asunto(s)
Investigación Biomédica , Cirujanos , Humanos , Estados Unidos , Mentores , Docentes , Centros Médicos Académicos , Movilidad Laboral , National Institutes of Health (U.S.)
13.
iScience ; 26(12): 108333, 2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-38034362

RESUMEN

Acute inflammation is heterogeneous in critical illness and predictive of outcome. We hypothesized that genetic variability in novel, yet common, gene variants contributes to this heterogeneity and could stratify patient outcomes. We searched algorithmically for significant differences in systemic inflammatory mediators associated with any of 551,839 SNPs in one derivation (n = 380 patients with blunt trauma) and two validation (n = 75 trauma and n = 537 non-trauma patients) cohorts. This analysis identified rs10404939 in the LYPD4 gene. Trauma patients homozygous for the A allele (rs10404939AA; 27%) had different trajectories of systemic inflammation along with persistently elevated multiple organ dysfunction (MOD) indices vs. patients homozygous for the G allele (rs10404939GG; 26%). rs10404939AA homozygotes in the trauma validation cohort had elevated MOD indices, and non-trauma patients displayed more complex inflammatory networks and worse 90-day survival compared to rs10404939GG homozygotes. Thus, rs10404939 emerged as a common, broadly prognostic SNP in critical illness.

14.
Immunity ; 56(12): 2736-2754.e8, 2023 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-38016467

RESUMEN

Extensive studies demonstrate the importance of the STING1 (also known as STING) protein as a signaling hub that coordinates immune and autophagic responses to ectopic DNA in the cytoplasm. Here, we report a nuclear function of STING1 in driving the activation of the transcription factor aryl hydrocarbon receptor (AHR) to control gut microbiota composition and homeostasis. This function was independent of DNA sensing and autophagy and showed competitive inhibition with cytoplasmic cyclic guanosine monophosphate (GMP)-AMP synthase (CGAS)-STING1 signaling. Structurally, the cyclic dinucleotide binding domain of STING1 interacted with the AHR N-terminal domain. Proteomic analyses revealed that STING1-mediated transcriptional activation of AHR required additional nuclear partners, including positive and negative regulatory proteins. Although AHR ligands could rescue colitis pathology and dysbiosis in wild-type mice, this protection was abrogated by mutational inactivation of STING1. These findings establish a key framework for understanding the nuclear molecular crosstalk between the microbiota and the immune system.


Asunto(s)
Proteómica , Receptores de Hidrocarburo de Aril , Animales , Ratones , ADN , Homeostasis , Intestinos , Receptores de Hidrocarburo de Aril/genética , Receptores de Hidrocarburo de Aril/metabolismo
15.
Biochim Biophys Acta Gen Subj ; 1867(11): 130452, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37652366

RESUMEN

The interdependent and finely tuned balance between the well-established redox-based modification, S-nitrosylation, and its counteractive mechanism of S-nitrosothiol degradation, i.e., S-denitrosylation of biological protein or non-protein thiols defines the cellular fate in the context of redox homeostasis. S-nitrosylation of cysteine residues by S-nitrosoglutathione, S-nitroso-L-cysteine-like physiological and S-nitroso-L-cysteine ethyl ester-like synthetic NO donors inactivate Caspase-3, 8, and 9, thereby hindering their apoptotic activity. However, spontaneous restoration of their activity upon S-denitrosylation of S-nitrosocaspases into their reduced, free thiol active states, aided by the members of the ubiquitous cellular redoxin (thioredoxin/ thioredoxin reductase/ NADPH) and low molecular weight dithiol (lipoic acid/ lipoamide dehydrogenase/ dihydrolipoic acid/ NADPH) systems imply a direct relevance to their proteolytic activities and further downstream signaling cascades. Additionally, our previous and current findings offer crucial insight into the concept of redundancy between thioredoxin and lipoic acid systems, and the redox-modulated control of the apoptotic and proteolytic activity of caspases, triggering their cyto- and neurotoxic effects in response to nitro-oxidative stress. Thus, this might lay the foundation for the exogenous introduction of precise and efficient NO or related donor drug delivery systems that can directly participate in catering to the S-(de)-nitrosylation-mediated functional outcomes of the cysteinyl proteases in pathophysiological settings.


Asunto(s)
Óxido Nítrico , Ácido Tióctico , Humanos , Óxido Nítrico/metabolismo , Caspasa 9/metabolismo , Células Hep G2 , NADP/metabolismo , Tiorredoxinas/metabolismo , Reductasa de Tiorredoxina-Disulfuro
17.
Cell Death Dis ; 14(5): 319, 2023 05 11.
Artículo en Inglés | MEDLINE | ID: mdl-37169743

RESUMEN

A strong correlation between NOS2 and COX2 tumor expression and poor clinical outcomes in ER breast cancer has been established. However, the mechanisms of tumor induction of these enzymes are unclear. Analysis of The Cancer Genome Atlas (TCGA) revealed correlations between NOS2 and COX2 expression and Th1 cytokines. Herein, single-cell RNAseq analysis of TNBC cells shows potent NOS2 and COX2 induction by IFNγ combined with IL1ß or TNFα. Given that IFNγ is secreted by cytolytic lymphocytes, which improve clinical outcomes, this role of IFNγ presents a dichotomy. To explore this conundrum, tumor NOS2, COX2, and CD8+ T cells were spatially analyzed in aggressive ER-, TNBC, and HER2 + breast tumors. High expression and clustering of NOS2-expressing tumor cells occurred at the tumor/stroma interface in the presence of stroma-restricted CD8+ T cells. High expression and clustering of COX2-expressing tumor cells extended into immune desert regions in the tumor core where CD8+ T cell penetration was limited or absent. Moreover, high NOS2-expressing tumor cells were proximal to areas with increased satellitosis, suggestive of cell clusters with a higher metastatic potential. Further in vitro experiments revealed that IFNγ + IL1ß/TNFα increased the elongation and migration of treated tumor cells. This spatial analysis of the tumor microenvironment provides important insight into distinct neighborhoods where stroma-restricted CD8+ T cells exist proximal to NOS2-expressing tumor niches that could have increased metastatic potential.


Asunto(s)
Interferón gamma , Neoplasias de la Mama Triple Negativas , Microambiente Tumoral , Femenino , Humanos , Linfocitos T CD8-positivos , Línea Celular Tumoral , Ciclooxigenasa 2/genética , Ciclooxigenasa 2/metabolismo , Interferón gamma/genética , Interferón gamma/metabolismo , Óxido Nítrico Sintasa de Tipo II/genética , Óxido Nítrico Sintasa de Tipo II/metabolismo , Neoplasias de la Mama Triple Negativas/genética , Neoplasias de la Mama Triple Negativas/metabolismo , Neoplasias de la Mama Triple Negativas/patología , Microambiente Tumoral/genética , Microambiente Tumoral/inmunología , Factor de Necrosis Tumoral alfa/metabolismo
18.
Sci Rep ; 13(1): 6618, 2023 04 24.
Artículo en Inglés | MEDLINE | ID: mdl-37095162

RESUMEN

Dynamic Network Analysis (DyNA) and Dynamic Hypergraphs (DyHyp) were used to define protein-level inflammatory networks at the local (wound effluent) and systemic circulation (serum) levels from 140 active-duty, injured service members (59 with TBI and 81 non-TBI). Interleukin (IL)-17A was the only biomarker elevated significantly in both serum and effluent in TBI vs. non-TBI casualties, and the mediator with the most DyNA connections in TBI wounds. DyNA combining serum and effluent data to define cross-compartment correlations suggested that IL-17A bridges local and systemic circulation at late time points. DyHyp suggested that systemic IL-17A upregulation in TBI patients was associated with tumor necrosis factor-α, while IL-17A downregulation in non-TBI patients was associated with interferon-γ. Correlation analysis suggested differential upregulation of pathogenic Th17 cells, non-pathogenic Th17 cells, and memory/effector T cells. This was associated with reduced procalcitonin in both effluent and serum of TBI patients, in support of an antibacterial effect of Th17 cells in TBI patients. Dysregulation of Th17 responses following TBI may drive cross-compartment inflammation following combat injury, counteracting wound infection at the cost of elevated systemic inflammation.


Asunto(s)
Inflamación , Interleucina-17 , Humanos , Interleucina-17/farmacología , Factor de Necrosis Tumoral alfa/farmacología , Interferón gamma/farmacología , Biomarcadores , Células Th17
19.
bioRxiv ; 2023 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-37066331

RESUMEN

A strong correlation between NOS2 and COX2 tumor expression and poor clinical outcomes in ER-breast cancer has been established. However, mechanisms of tumor induction of these enzymes are unclear. Analysis of The Cancer Genome Atlas (TCGA) revealed correlations between NOS2 and COX2 expression and Th1 cytokines. Herein, single cell RNAseq analysis of TNBC cells shows potent NOS2 and COX2 induction by IFNγ combined with IL1ß or TNFα. Given that IFNγ is secreted by cytolytic lymphocytes, which improve clinical outcomes, this role of IFNγpresents a dichotomy. To explore this conundrum, tumor NOS2, COX2, and CD8 + T cells were spatially analyzed in aggressive ER-, TNBC, and HER2+ breast tumors. High expression and clustering of NOS2-expressing tumor cells occurred at the tumor/stroma interface in the presence of stroma-restricted CD8 + T cells. High expression and clustering of COX2-expressing tumor cells extended into immune desert regions in the tumor core where CD8 + T cell penetration was limited or absent. Moreover, high NOS2-expressing tumor cells were proximal to areas with increased satellitosis suggestive of cell clusters with a higher metastatic potential. Further in vitro experiments revealed that IFNγ+IL1ß/TNFα increased elongation and migration of treated tumor cells. This spatial analysis of the tumor microenvironment provides important insight of distinct neighborhoods where stroma-restricted CD8 + T cells exist proximal to NOS2-expressing tumor niches that could have increased metastatic potential.

20.
Ann Surg ; 278(4): e840-e847, 2023 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-36735480

RESUMEN

OBJECTIVE: Evaluate the association of survival with helicopter transport directly to a trauma center compared with ground transport to a non-trauma center (NTC) and subsequent transfer. SUMMARY BACKGROUND DATA: Helicopter transport improves survival after injury. One potential mechanism is direct transport to a trauma center when the patient would otherwise be transported to an NTC for subsequent transfer. METHODS: Scene patients 16 years and above with positive physiological or anatomic triage criteria within PTOS 2000-2017 were included. Patients transported directly to level I/II trauma centers by helicopter were compared with patients initially transported to an NTC by ground with a subsequent helicopter transfer to a level I/II trauma center. Propensity score matching was used to evaluate the association between direct helicopter transport and survival. Individual triage criteria were evaluated to identify patients most likely to benefit from direct helicopter transport. RESULTS: In all, 36,830 patients were included. Direct helicopter transport was associated with a nearly 2-fold increase in odds of survival compared with NTC ground transport and subsequent transfer by helicopter (aOR 2.78; 95% CI 2.24-3.44, P <0.01). Triage criteria identifying patients with a survival benefit from direct helicopter transport included GCS≤13 (1.71; 1.22-2.41, P <0.01), hypotension (2.56; 1.39-4.71, P <0.01), abnormal respiratory rate (2.30; 1.36-3.89, P <0.01), paralysis (8.01; 2.03-31.69, P <0.01), hemothorax/pneumothorax (2.34; 1.36-4.05, P <0.01), and multisystem trauma (2.29; 1.08-4.84, P =0.03). CONCLUSIONS: Direct trauma center access is a mechanism driving the survival benefit of helicopter transport. First responders should consider helicopter transport for patients meeting these criteria who would otherwise be transported to an NTC.


Asunto(s)
Ambulancias Aéreas , Servicios Médicos de Urgencia , Heridas y Lesiones , Humanos , Estudios Retrospectivos , Aeronaves , Triaje , Centros Traumatológicos , Puntaje de Gravedad del Traumatismo , Heridas y Lesiones/terapia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...