Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Cortex ; 133: 277-294, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33157347

RESUMEN

Older adults with sensory deficits are at higher risk for developing cognitive impairment and dementia. It remains uncertain if the link between sensory and cognitive functioning reflects a common underlying factor or whether sensory deficits directly undermine cognitive processing. This issue was addressed by comparing behavioral and event-related potential responses of 16 older and 16 young adults during a working memory paradigm that parametrically varied visual contrast level (100%, 69%, 22%) and cognitive task load (1-4 face pairs to remember). The groups were well-matched on demographic and neuropsychological variables; however, older adults had worse corrected visual acuity and contrast sensitivity. The study's major finding was an interaction between visual contrast level and task load on performance accuracy (percent of correct responses) and the allocation of resources for decision making/updating (as indexed by the P3b amplitude). The negative impact of degraded visual processing was greater at higher levels of task demand. This result suggests that a shared pool of processing resources is used to mediate cognitive operations and manage the processing of degraded images. The study also demonstrated that older adults reach the limits of their processing capacity at lower levels of task load. The interaction between visual degradation and task demand, accompanied by the age-related reduction in available processing resources highlight the increased vulnerability of older adults. Specifically, an age-associated decline in visual acuity and contrast sensitivity puts older adults at risk for depleting their limited resources in the service of processing degraded visual images. The results of this study underscore the potential importance of optimizing vision in older adults to help mitigate age-associated cognitive decline.


Asunto(s)
Disfunción Cognitiva , Demencia , Anciano , Envejecimiento , Cognición , Humanos , Memoria a Corto Plazo , Adulto Joven
2.
Front Aging Neurosci ; 11: 165, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31316374

RESUMEN

Exploratory behavior and responsiveness to novelty play an important role in maintaining cognitive function in older adults. Inferences about age- or disease-related differences in neural and behavioral responses to novelty are most often based on results from single experimental testing sessions. There has been very limited research on whether such findings represent stable characteristics of populations studied, which is essential if investigators are to determine the result of interventions aimed at promoting exploratory behaviors or draw appropriate conclusions about differences in the processing of novelty across diverse clinical groups. The goal of the current study was to investigate the short-term test-retest reliability of event-related potential (ERP) and behavioral responses to novel stimuli in cognitively normal older adults. ERPs and viewing durations were recorded in 70 healthy older adults participating in a subject-controlled visual novelty oddball task during two sessions occurring 7 weeks apart. Mean midline P3 amplitude and latency, mean midline amplitude during successive 50 ms intervals, temporospatial factors derived from principal component analysis (PCA), and viewing duration in response to novel stimuli were measured during each session. Analysis of variance (ANOVA) revealed no reliable differences in the value of any measurements between Time 1 and 2. Intraclass correlation coefficients (ICCs) between Time 1 and 2 were excellent for mean P3 amplitude (ICC = 0.86), the two temporospatial factors consistent with the P3 components (ICC of 0.88 and 0.76) and viewing duration of novel stimuli (ICC = 0.81). Reliability was only fair for P3 peak latency (ICC = 0.56). Successive 50 ms mean amplitude measures from 100 to 1,000 ms yielded fair to excellent reliabilities, and all but one of the 12 temporospatial factors identified demonstrated ICCs in the good to excellent range. We conclude that older adults demonstrate substantial stability in ERP and behavioral responses to novel visual stimuli over a 7-week period. These results suggest that older adults may have a characteristic way of processing novelty that appears resistant to transient changes in their environment or internal states, which can be indexed during a single testing session. The establishment of reliable measures of novelty processing will allow investigators to determine whether proposed interventions have an impact on this important aspect of behavior.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...