RESUMEN
BACKGROUND: Teachers constantly strive to obtain reliable and appropriate teaching and assessment methods to maximize the learning experience. This study aimed to introduce combined modified team-based learning and open-book exams (TBL/OBEs) as learning and assessment strategies in clinical biochemistry for medical students and assess students' perceptions. METHODS: Second-year medical students enrolled in the clinical biochemistry course were included in this study and subjected to TBL/OBE assessment. The assessment included two parts: the open-book format for half of the questions and the closed-book format for the other as a control. Upon completing the combined TBL/OBE session, the students were required to complete a structured survey to evaluate their perception of the experience. The data were gathered and analyzed. Data were presented as mean±standard error of the mean (SEM), and a p-value ≤0.05 was considered statistically significant. RESULTS: A total of 358 students completed the TBL/OBE and closed-book exam (CBE) and responded to the survey. Of these students, 76% preferred the OBE, and 84% thought it was a suitable learning method. On the one hand, the mean difficulty of the OBE format was 92.7±1.5 SEM, while, for the CBE, the mean difficulty was 88.7±1.9 SEM (p=0.015). On the other hand, the mean discrimination factor for OBE was 0.26±0.04 and, for the CBE, 0.41±0.04 SEM (p=0.0016). Males found the OBE questions easier (p=0.025) and less stressful (p=0.01). CONCLUSION: A combined model of modified TBL and OBE is a successful learning and assessment strategy in clinical biochemistry for medical students.
RESUMEN
Brain insulin resistance is linked to metabolic syndrome (MetS). A low-carbohydrate, high-fat (LCHF) diet has been proposed to have a protective effect. Therefore, this study aimed to investigate the brain insulin resistance markers in a rat animal model of MetS and the protective effects of the LCHF diet. Four groups of male rats (10/group) were created. Group I (Control) was fed a regular diet. Groups II-IV were injected with dexamethasone (DEX) to induce MetS. Group II received DEX with a regular diet. Group III (DEX + LCHF) rates were fed a low-carbohydrate, high-fat diet, while Group IV (DEX + HCLF) rats were fed a high-carbohydrate, low-fat (HCLF) diet. At the end of the four-week experiment, HOMA-IR was calculated. Moreover, cerebral gene expression analysis of S-100B, BDNF, TNF-α, IGF-1, IGF-1 R, IGFBP-2, IGFBP-5, Bax, Bcl-2, and caspase-3 was carried out. In the DEX group, rats showed a significant increase in the HOMA-IR and a decrease in the gene expression of IGF-1, IGF-1 R, IGFBP-2, IGFBP-5, BDNF, and Bcl2, with a concomitant rise in S100B, TNF-α, Bax, and caspase-3. The LCHF diet group showed a significantly opposite effect on all parameters. In conclusion, MetS is associated with dysregulated cerebral gene expression of BDNF, S100B, and TNF-α and disturbed IGF-1 signaling, with increased apoptosis and neuroinflammation. Moreover, the LCHF diet showed a protective effect, as evidenced by preservation of the investigated biochemical and molecular parameters.
RESUMEN
Factors such as aging, an unhealthy lifestyle with decreased physical activity, snacking, a standard Western diet, and smoking contribute to raising blood pressure to a dangerous level, increasing the risk of coronary artery disease and heart failure. Atherosclerosis, or aging of the blood vessels, is a physiological process that has accelerated in the last decades by the overconsumption of carbohydrates as the primary sources of caloric intake, resulting in increased triglycerides and VLDL-cholesterol and insulin spikes. Classically, medications ranging from beta blockers to angiotensin II blockers and even calcium channel blockers were used alone or in combination with lifestyle modifications as management tools in modern medicine to control arterial blood pressure. However, it is not easy to control blood pressure or the associated complications. A low-carbohydrate, high-fat (LCHF) diet can reduce glucose and insulin spikes, improve insulin sensitivity, and lessen atherosclerosis risk factors. We reviewed articles describing the etiology of insulin resistance (IR) and its impact on arterial blood pressure from databases including PubMed, PubMed Central, and Google Scholar. We discuss how the LCHF diet is beneficial to maintaining arterial blood pressure at normal levels, slowing down the progression of atherosclerosis, and reducing the use of antihypertensive medications. The mechanisms involved in IR associated with hypertension are also highlighted.
RESUMEN
BACKGROUND: Familial hypercholesterolemia (FH) is a globally underdiagnosed inherited metabolic disorder. Owing to limited published data from Arab world, this study was conducted with the aim of identifying the genetic and molecular basis of FH in highly consanguineous Saudi population. METHODS: We performed clinical screening, biochemical profiling, whole exome sequencing and variant segregation analysis of two Saudi FH families. Additionally, 500 normolipic individuals were screened to ensure the absence of FH variant in general Saudi population. Functional characterization of FH variants on secondary structure characteristics of RNA and protein molecules was performed using different bioinformatics modelling approaches. RESULTS: WES analysis identified two independent rare LDLR gene stop gain variants (p.C231* and p.R744*) consistent to the clinical presentation of FH patients from two different families. RNAfold analysis has shown that both variants were predicted to disturb the free energy dynamics of LDLR mRNA molecule and destabilize its folding pattern and function. PSIPRED based structural modelling analysis has suggested that both variants bring drastic changes disturbing the secondary structural elements of LDLR molecule. The p.C231* and p.R744* variants are responsible for partial or no protein product, thus they are class 1 variants causing loss of function (LoF) LDLR variants. CONCLUSIONS: This study highlights the effectiveness of the WES, sanger sequencing, and computational analysis in expanding FH variant spectrum in culturally distinct populations like Saudi Arabia. Genetic testing of FH patients is very essential in better clinical diagnosis, screening, treatment, and management and prevention of cardiovascular disease burden in the society.
Asunto(s)
Enfermedades Cardiovasculares , Hiperlipoproteinemia Tipo II , Humanos , Pruebas Genéticas , Hiperlipoproteinemia Tipo II/diagnóstico , Hiperlipoproteinemia Tipo II/genética , Hiperlipoproteinemia Tipo II/epidemiología , Mutación , Fenotipo , Receptores de LDL/genética , Receptores de LDL/química , Receptores de LDL/metabolismo , Arabia SauditaRESUMEN
The incidence of metabolic syndrome and diabetes mellitus is increasing globally. A diet rich in carbohydrates increases the hyperglycemic state. While considering the lifestyle changes to combat life-threatening diseases, there is an effort to decrease the daily intake of carbohydrates. A low-carbohydrate diet also makes the body rely more on fat for energy, so there is less fat accumulation. A diet is considered to be low-carbohydrate ketogenic if the intake is ≤ 50 g per day. The 'low -carbohydrate ketogenic diet' (LCKD) produces ketosis. LCKD contains high-fat, moderateprotein, and low-carbohydrate components. The main objectives of the present review are to discuss insulin resistance in different viscera of the body, describe the role of adipokines in insulin resistance, understand the mechanism of ketogenesis, and determine the impact of LCKD in overcoming insulin resistance in the body. In the present review, we also highlight the beneficial effects of LCKD in metabolic, neurodegenerative, cardiovascular, and lipid disorders and discuss the effect on longevity and aging. LCKD may help in combating the morbidity and mortality arising from the above-mentioned diseases and also help in leading a better quality of life.
Asunto(s)
Dieta Cetogénica , Resistencia a la Insulina , Cetosis , Humanos , Calidad de Vida , Dieta Baja en Carbohidratos , Cuerpos Cetónicos , CarbohidratosRESUMEN
Insulin resistance (IR) plays a role in the pathogenesis of many diseases, such as type 2 diabetes mellitus, cardiovascular disease, non-alcoholic fatty liver disease, obesity, and neurodegenerative diseases, including Alzheimer's disease. The ketogenic diet (KD) is a low-carbohydrate/high-fat diet that arose in the 1920s as an effective treatment for seizure control. Since then, the KD has been studied as a therapeutic approach for various IR-related disorders with successful results. To date, the use of the KD is still debatable regarding its safety. Some studies have acknowledged its usefulness, while others do not recommend its long-term implementation. In this review, we applied a SWOC (Strengths, Weaknesses, Opportunities, and Challenges) analysis that revealed the positive, constructive strengths of the KD, its potential complications, different conditions that can make used for it, and the challenges faced by both physicians and subjects throughout a KD. This SWOC analysis showed that the KD works on the pathophysiological mechanism of IR-related disorders such as chronic inflammation, oxidative stress and mitochondrial stress. Furthermore, the implementation of the KD as a potential adjuvant therapy for many diseases, including cancer, neurodegenerative disorders, polycystic ovary syndrome, and pain management was proven. On the other hand, the short and long-term possible undesirable KD-related effects, including nutritional deficiencies, growth retardation and nephrolithiasis, should be considered and strictly monitored. Conclusively, this review provides a context for decision-makers, physicians, researchers, and the general population to focus on this dietary intervention in preventing and treating diseases. Moreover, it draws the attention of scientists and physicians towards the opportunities and challenges associated with the KD that requires attention before KD initiation.
RESUMEN
Familial hypercholesterolemia (FH) is a monogenic lipid disorder which promotes atherosclerosis and cardiovascular diseases. Owing to the lack of sufficient published information, this study aims to identify the potential genetic biomarkers for FH by studying the global gene expression profile of blood cells. The microarray expression data of FH patients and controls was analyzed by different computational biology methods like differential expression analysis, protein network mapping, hub gene identification, functional enrichment of biological pathways, and immune cell restriction analysis. Our results showed the dysregulated expression of 115 genes connected to lipid homeostasis, immune responses, cell adhesion molecules, canonical Wnt signaling, mucin type O-glycan biosynthesis pathways in FH patients. The findings from expanded protein interaction network construction with known FH genes and subsequent Gene Ontology (GO) annotations have also supported the above findings, in addition to identifying the involvement of dysregulated thyroid hormone and ErbB signaling pathways in FH patients. The genes like CSNK1A1, JAK3, PLCG2, RALA, and ZEB2 were found to be enriched under all GO annotation categories. The subsequent phenotype ontology results have revealed JAK3I, PLCG2, and ZEB2 as key hub genes contributing to the inflammation underlying cardiovascular and immune response related phenotypes. Immune cell restriction findings show that above three genes are highly expressed by T-follicular helper CD4+ T cells, naïve B cells, and monocytes, respectively. These findings not only provide a theoretical basis to understand the role of immune dysregulations underlying the atherosclerosis among FH patients but may also pave the way to develop genomic medicine for cardiovascular diseases.
RESUMEN
Metabolic syndrome (MetS) risks cardiovascular diseases due to its associated Dyslipidemia. It is proposed that a low-carbohydrate, high-fat (LCHF) diet positively ameliorates the MetS and reverses insulin resistance. Therefore, we aimed to investigate the protecting effect of the LCHF diet on MetS-associated Dyslipidemia in an experimental animal model. Forty male Sprague-Dawley rats were divided into four groups (10/group): the control group, dexamethasone-induced MetS (DEX) (250 µg/kg/day), LCHF-fed MetS group (DEX + LCHF), and High-Carbohydrate-Low-Fat-fed MetS group (DEX + HCLF). At the end of the four-week experiment, fasting glucose, insulin, lipid profile (LDL-C, HDL-C, Triglyceride), oxidized-LDL, and small dense-LDL using the ELISA technique were estimated. HOMA-IR, Apo B/Apo A1 ratio, and TG/HDL were calculated. Moreover, histological examination of the liver by H & E and Sudan III stain was carried out. In the DEX group, rats showed a significant (p < 0.05) increase in the HOMA-IR, atherogenic parameters, such as s-LDL, OX-LDL, Apo B/Apo A1 ratio, and TG/HDL. The LCHF diet significantly improved the parameters of Dyslipidemia (p < 0.05) by decreasing the Apo B/Apo A1 and TG/HDL-C ratios. Decreased steatosis in LCHF-fed rats compared to HCLF was also revealed. In conclusion, the LCHF diet ameliorates MetS-associated Dyslipidemia, as noted from biochemical results and histological examination.
Asunto(s)
Dislipidemias , Síndrome Metabólico , Animales , Apolipoproteína A-I , Apolipoproteínas A , Apolipoproteínas B , Biomarcadores , Carbohidratos , Colesterol , Dieta Alta en Grasa/efectos adversos , Masculino , Síndrome Metabólico/diagnóstico , Ratas , Ratas Sprague-Dawley , TriglicéridosRESUMEN
BACKGROUND: Obesity is associated with the quantitative changes in miRNAs and their target genes. However, the molecular basis of their dysregulation and expression status correlations is incompletely understood. Therefore, this study aims to examine the shared differentially expressed miRNAs and their target genes between blood and adipose tissues of obese individuals to identify potential blood-based biomarkers. METHODS: In this study, 3 gene expression datasets (two mRNA and one miRNA), generated from blood and adipose tissues of 68 obese and 39 lean individuals, were analyzed by a series of robust computational concepts, like protein interactome mapping, functional enrichment of biological pathways and construction of miRNA-mRNA and transcription factor gene networks. RESULTS: The comparison of blood versus tissue datasets has revealed the shared differential expression of 210 genes (59.5% upregulated) involved in lipid metabolism and inflammatory reactions. The blood miRNA (GSE25470) analysis has identified 79 differentially expressed miRNAs (71% downregulated). The miRNA-target gene scan identified regulation of 30 shared genes by 22miRNAs. The gene network analysis has identified the inverse expression correlation between 8 target genes (TP53, DYSF, GAB2, GFRA2, NACC2, FAM53C, JNK and GAB2) and 3 key miRNAs (hsa-mir-940, hsa-mir-765, hsa-mir-612), which are further regulated by 24 key transcription factors. CONCLUSIONS: This study identifies potential obesity related blood biomarkers from large-scale gene expression data by computational miRNA-target gene interactome and transcription factor network construction methods.
Asunto(s)
Redes Reguladoras de Genes , MicroARNs , Biomarcadores , Biología Computacional/métodos , Perfilación de la Expresión Génica/métodos , Regulación Neoplásica de la Expresión Génica , Humanos , MicroARNs/metabolismo , Obesidad/genética , ARN Mensajero/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismoRESUMEN
Obesity and type 2 and diabetes mellitus (T2D) are two dual epidemics whose shared genetic pathological mechanisms are still far from being fully understood. Therefore, this study is aimed at discovering key genes, molecular mechanisms, and new drug targets for obesity and T2D by analyzing the genome wide gene expression data with different computational biology approaches. In this study, the RNA-sequencing data of isolated primary human adipocytes from individuals who are lean, obese, and T2D was analyzed by an integrated framework consisting of gene expression, protein interaction network (PIN), tissue specificity, and druggability approaches. Our findings show a total of 1932 unique differentially expressed genes (DEGs) across the diabetes versus obese group comparison (p≤0.05). The PIN analysis of these 1932 DEGs identified 190 high centrality network (HCN) genes, which were annotated against 3367 GO terms and functional pathways, like response to insulin signaling, phosphorylation, lipid metabolism, glucose metabolism, etc. (p≤0.05). By applying additional PIN and topological parameters to 190 HCN genes, we further mapped 25 high confidence genes, functionally connected with diabetes and obesity traits. Interestingly, ERBB2, FN1, FYN, HSPA1A, HBA1, and ITGB1 genes were found to be tractable by small chemicals, antibodies, and/or enzyme molecules. In conclusion, our study highlights the potential of computational biology methods in correlating expression data to topological parameters, functional relationships, and druggability characteristics of the candidate genes involved in complex metabolic disorders with a common etiological basis.
Asunto(s)
Diabetes Mellitus Tipo 2 , Redes Reguladoras de Genes , Biomarcadores/metabolismo , Biología Computacional/métodos , Diabetes Mellitus Tipo 2/genética , Perfilación de la Expresión Génica , Humanos , Obesidad/genética , Obesidad/metabolismo , Mapas de Interacción de ProteínasRESUMEN
This scoping review aims to clarify the interplay between obesity, vitamin D deficiency, cellular senescence, and obesity-related metabolic consequences, mainly subclinical atherosclerosis, and non-alcoholic fatty liver disease (NAFLD). Obesity is a significant global health problem that involves cellular, environmental, behavioral, and genetic elements. The fundamental cause of obesity throughout all life stages is an energy imbalance, and its consequences are countless and, foremost, very common. Obesity has been comprehensively studied in the literature given its association with low serum vitamin D, with many proposed mechanisms linking the two conditions. Moreover, markers of exaggerated cellular senescence have been proven to accumulate in obese individuals. Subclinical atherosclerosis initiates an early stage that ends in serious cardiac events, and obesity, low vitamin D, and senescent cells largely contribute to its associated chronic low-grade inflammation. Furthermore, NAFLD signifies the hepatic manifestation of metabolic syndrome, and studies have highlighted the important role of obesity, vitamin D deficiency, and cellular senescence in its development. Therefore, we outlined the most important mechanisms tying these conditions to one another.
Asunto(s)
Aterosclerosis , Senescencia Celular , Enfermedad del Hígado Graso no Alcohólico , Obesidad/complicaciones , Deficiencia de Vitamina D/complicaciones , Vitamina D/sangre , Aterosclerosis/sangre , Comorbilidad , Humanos , Inflamación/etiología , Hígado/patología , Síndrome Metabólico/sangre , Síndrome Metabólico/etiología , Morbilidad , Enfermedad del Hígado Graso no Alcohólico/sangre , Obesidad/sangre , Obesidad/fisiopatología , Factores de Riesgo , Deficiencia de Vitamina D/sangreRESUMEN
Autophagy is a cellular process that eliminates unnecessary cytoplasmic materials, such as long-age proteins, destroyed organelles, and foreign microorganisms. Macroautophagy (MaA), chaperone-mediated autophagy, and microautophagy are the three main types of autophagy. It is regulated by the integration of signaling from the AMPK and mTOR-ULK1 pathways. Autophagy plays a physiological role in health, and its dysregulation could be a pathophysiologic mechanism in different disease conditions. In the current study, we reviewed papers of Google Scholar database, PubMed, PubMed Central, Cochrane Database of Systematic Reviews, MEDLINE, and MedlinePlus with no time limitation and a recent World Health Organization report. In the current review, it could be concluded that autophagy plays many physiological functions, including immune system modulation, and regulates different cellular processes such as metabolism, protein synthesis, and cellular transportation. Dysregulation of autophagy is implicated in tumorigenesis, aging, age-related neurodegeneration, and endothelial dysfunctions. Autophagy dysregulation is also implicated in the newly discovered CoV-COVID-19 pathogenesis.
RESUMEN
The exact link between obesity, vitamin D deficiency, and their relation to cellular senescence in the pathogenesis of subclinical atherosclerosis is still under debate. Therefore, the current study aims to verify the possible role of vitamin D deficiency and cellular senescence in the pathogenesis of obesity-related subclinical atherosclerosis. Moreover, it aims to investigate the possible protective role of vitamin D supplementation. Fifty-seven male albino rats were enrolled in the study and classified into four groups: negative (10) and positive control groups (10), an obese model group (24), and a vitamin-D-supplemented obese group (13). Aortic tissue samples and fasting blood samples were collected. The following biochemical investigations were performed: serum cholesterol, triglycerides, HDL-C, LDL-C, ALT, AST, CPK, CK-MB, and hs-cTnt. HOMA-IR was calculated. Moreover, serum SMP-30, 25 (OH)Vitamin D3, and eNOS were determined by the ELISA technique. Aortic gene expression of eNOS, SMP-30, and P53 was estimated by real-time qRT-PCR. Serum 25(OH) D3 and SMP-30 were lower in the obese group. In addition, the obese group showed higher serum lipid profile, HOMA-IR, eNOS, ALT, AST, CPK, CK-MB, and hs-cTnt than the control groups, while decreased levels were found in the vitamin-D-treated obese group. Gene expression of eNOS and SMP-30 were in accordance with their serum levels. A positive correlation was found between vitamin D level and SMP-30. In conclusion, obesity is associated with vitamin D deficiency and enhanced cellular senescence. They could play a role in the pathogenesis of obesity-associated subclinical atherosclerosis and endothelial dysfunction. Vitamin D supplements could play a protective role against such obesity-related comorbidity.
Asunto(s)
Aterosclerosis/tratamiento farmacológico , Aterosclerosis/patología , Senescencia Celular , Suplementos Dietéticos , Obesidad/patología , Deficiencia de Vitamina D/tratamiento farmacológico , Deficiencia de Vitamina D/patología , Vitamina D/uso terapéutico , Animales , Aterosclerosis/complicaciones , Masculino , Óxido Nítrico Sintasa de Tipo III/metabolismo , Ratas Sprague-Dawley , Proteína p53 Supresora de Tumor/metabolismo , Vitamina D/farmacología , Deficiencia de Vitamina D/complicacionesRESUMEN
BACKGROUND: Nonalcoholic fatty liver disease (NAFLD) is a pathological process characterized by excessive hepatic fatty deposition with possible involvement of vitamin D deficiency and cellular senescence. The aim of this study is to investigate the pathophysiologic role of vitamin D deficiency and cellular senescence in NAFLD development. Moreover, it aims to investigate the potential protective role of vitamin D supplementation. METHODS: This is an experimental Case/Control study. Forty-five male albino rats were enrolled in this study. Animals were divided into four groups: negative and positive control groups (10 for each group), a model of NAFLD (11) and vitamin D-treated NAFLD groups (14). At the end of the experiment, all rats were subjected to the following investigation; biochemical estimation of serum 25 hydroxycholecalciferol, senescence marker protein-30 (SMP-30), lipid profile and calculation of homeostatic model of insulin resistance (HOMA-IR). RESULTS: NAFLD group shows a significant increase in glucose, insulin levels, and HOMA- IR compared with both normal controls. This finding indicates the intimate association between insulin resistance and NAFLD pathogenesis. Moreover, it was found that NAFLD group shows a significant decrease in SMP-30 level compared with normal controls. While vitamin D-treated NAFLD group shows significant increased SMP-30 and decrease in HOMA-IR in comparison with nontreated NAFLD group. CONCLUSION: Vitamin D deficiency and increased cellular senescence are key features of NAFLD. Vitamin D supplementation could play a protective role, which needs further investigation including clinical human study.
RESUMEN
BACKGROUND: Familial Hypercholesterolemia (FH) is a serious under-diagnosed disease characterized by raised low-density lipoprotein cholesterol (LDL-C) and premature coronary artery diseases (CAD). The scarcity of FH reported patients in Saudi Arabia indicates lack of FH awareness among physicians. OBJECTIVE: The goal of this research was to assess knowledge, awareness, and practice (KAP) about FH disorder among Saudi medical interns and to identify areas that need educational attention. METHODS: This cross-sectional study involved 170 Saudi medical interns (83 males and 87 females) from academic institutes in Jeddah, Saudi Arabia. The interns were asked to fill an online FH-KAP questionnaire. Total score for each separate domain measured by adding correct answers. RESULTS: Although, knowledge of FH definition (76.5%) and classical lipid profile (52.4%) were reasonable; knowledge on inheritance (43.5%), prevalence (12.4%) and CAD risks (7.1%) were poor. Knowledge score was significantly higher in female than male (7.5 ± 3 vs. 5.3 ± 2.6, P < 0.001). Regarding awareness, 54.1% were familiar with FH disorder, 50.6% with the presence of lipid clinic but only 16.5% were acquainted with guidelines. Furthermore, in the practice domain 82.9% selected statin as first line treatment and 62.9% chose routinely checking the rest of the family, while 15.3% chose ages 13-18 years to screen for hypercholesterolemia in patients with a positive family history of premature CAD. CONCLUSION: Substantial defects in FH-KAP among Saudi medical interns were found, emphasizing the importance of professional training. Extensive and constant medical education programs as early as an internship are required to close the gap in CAD prevention.
Asunto(s)
Conocimientos, Actitudes y Práctica en Salud , Hiperlipoproteinemia Tipo II/psicología , Internado y Residencia , Adulto , Estudios Transversales , Femenino , Humanos , Masculino , Arabia Saudita , Encuestas y Cuestionarios , Adulto JovenRESUMEN
Homing and tumor attenuation potential of BM-MSCs labelled with superparamagnetic iron-oxide nanoparticles (SPIONs) in a rat model of hepatic cirrhosis was evaluated. Rat BM-MSCs were derived, characterized and labelled with SPIONs (200 nm; 25 mg Fe/ml). Hepatic cirrhosis was induced in Wistar rats (n=30; 10/group) with carbon tetrachloride (CCl4; 0.3 mL/kg body weight) injected twice a week for 12 weeks. Group-I was administered vehicle (castor-oil) alone; Group-II received two doses of unlabelled BM-MSCs (3x106 cells) and Group-III received two doses of SPIONs labelled BM-MSCs (3x106 cells) via tail vein injection (0.5 ml) at weekly intervals. All animals were sacrificed after two weeks for histological, radiological and biochemical analysis. Derived BM-MSCs demonstrated MSCs related CD markers. Histology confirmed induction of hepatic cirrhosis with CCL4. Levels of alanine-aminotransferase, aspartate-aminotransferase,alkaline-phosphatase and gamma glutamyl-transferase returned to normal levels following treatment with BM-MSCs. Uptake and homing of SPIONs labelled BM-MSCs, and reduction in the size of cirrhotic nodules were confirmed using transmission electron microscopy and magnetic resonance imaging respectively. BM-MSCs reduced the pathological effects of CCL4 induced hepatic cirrhosis and labelling BMMSCs with SPIONs were non-toxic and enabled efficient tracking using non-invasive methods.
RESUMEN
BACKGROUND AND AIM OF THE WORK: The current study postulated that cyclosporine A (CSA) could induce gender-specific renal damage. Hence, the current study aims to investigate the nephrotoxic effect of perinatal exposure of male and female rat progeny to CSA. Moreover, it aims to evaluate the oxidative stress and inflammation as a possible pathophysiologic mechanism. MATERIALS AND METHODS: Female rats were randomly allocated to two groups of four and assigned to undergo either CSA (15 mg/kg/day; the 6th day after conception and continuing until the progeny were weaned) or vehicle treatment as control groups. At the age of 6 weeks, the progeny were divided into the following four groups: male progeny of control-group mothers (M-vehicle, 7); male progeny of CSA-treated mothers (M-CSA, 9); female progeny of control-group mothers (F-vehicle, 7); and female progeny of CSA-treated mothers (F-CSA, 6). Serum adiponectin, tumor necrosis factor-α (TNF-α) and creatinine, creatinine clearance, and urinary 8-isoprostane were measured. Histopathological examination by hematoxylin and eosin stain of Kidney was carried out. RESULTS: Proteinuria and decreased creatinine clearance are significant in M-CSA than M-vehicle and F-CSA. 8-isoprostane is lower in F-CSA than F-vehicle. Increased TNF-α and decreased adiponectin levels in M-CSA than M-vehicle were observed. No significant differences were found in female rat groups. CONCLUSION: From the current study, it could be concluded that CSA could induce renal inflammation as well as oxidative stress that may explain the impaired renal function. The sex difference was a prominent finding in their vulnerability to CSA effects.
RESUMEN
BACKGROUND: Vitamin D deficiency has been associated with adverse health outcomes. We examined genetic and environmental determinants of serum 25(OH)D3 and 1,25(OH)2D3 in childhood. METHODS: The study sample consisted of 322 healthy Australian children (predominantly Caucasians) who provided a venous blood sample. A parental interview was conducted and skin phototype and anthropometry measures were assessed. Concentrations of 25(OH)D3 and 1,25(OH)2D3 were measured by selective solid-phase extraction-capillary liquid chromatography-tandem mass spectrometry. These concentrations were deseasonalised where relevant to remove the effect of month of sampling. RESULTS: Deseasonalised log 25(OH)D3 and 1,25(OH)2D3 concentrations were only moderately correlated (r=0.42, p<0.001). The following predicted both 25(OH)D3 and 1,25(OH)2D3: UVR 6 weeks before the interview, natural skin and eye colour, height and vitamin D allelic metabolism score. The following predicted 25(OH)D3 only: lifetime sunburns and vitamin D allelic synthesis score. Overall, 43.5% and 25.6% of variation in 25(OH)D3 and 1,25(OH)2D3 could be explained. After accounting for 25(OH)D3 concentrations, higher UVR 6 weeks before the interview and vitamin D allelic metabolism score further predicted 1,25(OH)2D3 concentrations. CONCLUSIONS: Environmental factors and genetic factors contributed to both vitamin D metabolite concentrations. The intriguing finding that the higher ambient UVR contributed to higher 1,25(OH)2D3 after accounting for 25(OH)D3 concentrations requires further evaluation.
Asunto(s)
Calcifediol/metabolismo , Calcitriol/metabolismo , Ambiente , Marcadores Genéticos , Polimorfismo de Nucleótido Simple , Deficiencia de Vitamina D/epidemiología , Vitaminas/metabolismo , Australia/epidemiología , Niño , Humanos , Prevalencia , Deficiencia de Vitamina D/genética , Deficiencia de Vitamina D/metabolismoRESUMEN
Familial hypercholesterolaemia (FH) is a common genetic disorder characterized by high plasma low-density lipoprotein (LDL)-cholesterol and premature coronary artery disease. Many factors, such as illness, high-dose statin therapy or a strict vegan diet can cause hypobetalipoproteinaemia (HBL). The more common secondary causes of HBL in the hospital setting include cachexia, intestinal malabsorption, malnutrition, severe liver disease and hyperthyroidism. We report a case of HBL in a 43-year-old man with previously demonstrated marked hypercholesterolaemia who attended a lipid disorders clinic for FH cascade screening. Surprisingly, a lipid profile taken at that time showed low plasma LDL-cholesterol and apolipoprotein B concentrations of 1.6 mmol/L and 0.61 g/L, respectively. He was not on lipid-lowering therapy. DNA sequencing showed that he was heterozygous for the LDLR gene mutation (C677R) present in other affected family members. Of interest, his serum transaminases were increased by approximately 3-fold and hepatitis serology and genotyping confirmed a diagnosis of hepatitis C virus (HCV) infection. In summary, we describe a case of HBL secondary to chronic HCV infection in a patient with FH, confirmed by mutational analysis.