Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
IEEE Robot Autom Lett ; 6(3): 4664-4671, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-34532570

RESUMEN

Novel severe acute respiratory syndrome coronavirus 2 (COVID-19) has become a pandemic of epic proportions, and global response to prepare health systems worldwide is of utmost importance. 2-dimensional (2D) lung ultrasound (LUS) has emerged as a rapid, noninvasive imaging tool for diagnosing COVID-19 infected patients. Concerns surrounding LUS include the disparity of infected patients and healthcare providers, and importantly, the requirement for substantial physical contact between the patient and operator, increasing the risk of transmission. New variants of COVID-19 will continue to emerge; therefore, mitigation of the virus's spread is of paramount importance. A tele-operative robotic ultrasound platform capable of performing LUS in COVID-19 infected patients may be of significant benefit, especially in low- and middle-income countries. The authors address the issues mentioned above surrounding the use of LUS in COVID-19 infected patients and the potential for extension of this technology in a resource-limited environment. Additionally, first-time application, feasibility, and safety were validated in healthy subjects. Preliminary results demonstrate that our platform allows for the successful acquisition and application of robotic LUS in humans.

2.
Annu Int Conf IEEE Eng Med Biol Soc ; 2020: 4753-4757, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-33019053

RESUMEN

Sonomyography (ultrasound imaging) offers a way of classifying complex muscle activity and configuration, with higher SNR and lower hardware requirements than sEMG, using various supervised learning algorithms. The physiological image obtained from an ultrasound probe can be used to train a classification algorithm which can run on real time ultrasound images. The predicted values can then be mapped onto assistive or teleoperated robots. This paper describes the classification of ultrasound information and its subsequent mapping onto a soft robotic gripper as a step toward direct synergy control. Support Vector Classification algorithm has been used to classify ultrasound information into a set of defined states: open, closed, pinch and hook grasps. Once the model was trained with the ultrasound image data, real time input from the forearm was used to predict these states. The final predicted state output then set joint stiffnesses in the soft actuators, changing their interactions or synergies, to obtain the corresponding soft robotic gripper states. Data collection was carried out on five different test subjects for eight trials each. An average accuracy percentage of 93% was obtained averaged over all data. This real-time ultrasound-based control of a soft robotic gripper constitutes a promising step toward intuitive and robust biosignal-based control methods for robots.


Asunto(s)
Miembros Artificiales , Robótica , Algoritmos , Fuerza de la Mano , Implantación de Prótesis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...