Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Pharm Pharmacol ; 2024 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-39403839

RESUMEN

OBJECTIVES: Diabetic nephropathy (DN) is a serious consequence of diabetes that can develop through the lysophosphatidic acid axis. The purpose of this study was to determine whether the antidiabetic drug liraglutide can slow the development of diabetic kidney damage by altering the lysophosphatidic acid axis via KLF5. METHODS: Wistar albino rats were divided into nondiabetic and diabetic rats (resulting from an intraperitoneal streptozotocin dose of 30 mg/kg and a high-fat diet). These rats were further divided into four groups: nondiabetic control, liraglutide-treated nondiabetic, diabetic control, and liraglutide-treated diabetic. The nondiabetic and diabetic control groups received normal saline for 42 days, while the liraglutide-treated nondiabetic and diabetic groups received normal saline for 21 days, followed by a subcutaneous dose of liraglutide (200 µg/kg/day) for 21 days. Subsequently, serum levels of DN biomarkers were evaluated, and kidney tissues were histologically examined. The protein expression of PCNA, autotaxin, and KLF5 was detected. KEY FINDINGS: Liraglutide treatment in diabetic rats decreased DN biomarkers, histological abnormalities in kidney tissues, and the protein expression of PCNA, autotaxin, and KLF5. CONCLUSION: Liraglutide can slow the progression of DN by modulating KLF5-related lysophosphatidic acid axis. Thus, liraglutide may be an effective treatment for preventing or mitigating diabetes-related kidney damage.

2.
Biomedicines ; 12(4)2024 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-38672115

RESUMEN

Type 2 diabetes mellitus (T2DM) is a critical health problem, with 700 million diagnoses expected worldwide by 2045. Uncontrolled high blood glucose levels can lead to serious complications, including diabetic cardiomyopathy (DCM). Diabetes induces cardiovascular aging and inflammation, increasing cardiomyopathy risk. DCM is characterized by structural and functional abnormalities in the heart. Growing evidence suggests that cellular senescence and macrophage-mediated inflammation participate in the pathogenesis and progression of DCM. Evidence indicates that growth differentiation factor-15 (GDF-15), a protein that belongs to the transforming growth factor-beta (TGF-ß) superfamily, is associated with age-related diseases and exerts an anti-inflammatory role in various disease models. Although further evidence suggests that GDF-15 can preserve Klotho, a transmembrane antiaging protein, emerging research has elucidated the potential involvement of GDF-15 and Klotho in the interplay between macrophages-induced inflammation and cellular senescence in the context of DCM. This review explores the intricate relationship between senescence and macrophages in DCM while highlighting the possible contributions of GDF-15 and Klotho.

3.
Pharmaceuticals (Basel) ; 17(3)2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38543160

RESUMEN

One of the possible candidates for the treatment of diabetic cardiomyopathy is liraglutide, a glucagon-like peptide-1 receptor (GLP1R) agonist. In this study, the impacts of liraglutide on the integrin-linked kinase (ILK)-related PI3K/AKT axis in rats with type 2 diabetes induced via streptozotocin were examined. Twenty-four Wistar albino rats were distributed in four different groups, and a high-fat diet and streptozotocin were used to induce type 2 in two groups. Rats in the untreated control groups were administered 0.9% NaCl solution over a 6-week period, and those in the treatment groups were administered 0.9% NaCl for 3 weeks, followed by subcutaneous injection of liraglutide (150 µg/kg) for an additional 3 weeks. In the liraglutide-treated diabetic group, the heart-to-body weight ratio was significantly reduced, levels of cardiac biomarkers, troponin I and creatine-kinase-MB, were improved; activities of antioxidant enzymes, glutathione peroxidase and superoxide dismutase, were increased; and levels of malondialdehyde were decreased. Western blotting and immunohistochemical studies revealed increased levels of ILK, P-PI3K, P-AKT, and BCL2, as well as those of caspase 3, BAX, and P-PTEN, indicating mitigation of cardiomyocyte apoptosis. Our results show that liraglutide, by targeting GLP1Rs, enhances the expression of proteins in the ILK/PI3K/AKT/PTEN pathway and thereby exerts its cardioprotective effects in rats with DCM.

4.
J Pharm Pharmacol ; 76(1): 64-73, 2024 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-37992247

RESUMEN

OBJECTIVES: Diabetic cardiomyopathy is a known complication of diabetes mellitus. Herein, we aimed to determine whether glycemic control mediated by sitagliptin, a dipeptidyl peptidase-4 inhibitor, can ameliorate diabetic myocardial abnormalities by modulating TGF-ß signaling via the SMAD and integrin-linked kinase (ILK) pathways. METHODS: Four groups of male Wistar albino rats were used, with six rats in each group. Two nondiabetic and two diabetic (produced by a single intraperitoneal dose of streptozotocin (55 mg/kg)) groups were administered either normal saline or sitagliptin (100 mg/kg) orally for 6 weeks. Subsequently, HW/BW ratios and cardiac enzymes were assessed, along with a histological examination of cardiac tissues. Levels of TGF-ß, collagen I, p-SMAD2/3, TNF-α, MMP-9, and ILK were detected. RESULTS: Compared with the diabetic control group, sitagliptin-treated diabetic rats exhibited considerably reduced HW/BW ratios and troponin I and creatine kinase-MB levels, with improvements in histopathological changes in cardiac tissues. TGF-ß, collagen I, p-SMAD2/3, TNF-α, and MMP-9 levels were significantly decreased in the sitagliptin-treated diabetic group, whereas ILK was elevated following sitagliptin treatment. CONCLUSION: Sitagliptin could afford cardioprotective effects for the first time by altering ILK-associated TGF-ß/SMAD signaling pathways. Thus, sitagliptin may be a promising therapeutic target for the prevention of diabetic cardiomyopathy.


Asunto(s)
Diabetes Mellitus Experimental , Cardiomiopatías Diabéticas , Ratas , Masculino , Animales , Fosfato de Sitagliptina/farmacología , Fosfato de Sitagliptina/uso terapéutico , Cardiomiopatías Diabéticas/tratamiento farmacológico , Cardiomiopatías Diabéticas/prevención & control , Metaloproteinasa 9 de la Matriz , Factor de Crecimiento Transformador beta , Diabetes Mellitus Experimental/complicaciones , Diabetes Mellitus Experimental/tratamiento farmacológico , Diabetes Mellitus Experimental/metabolismo , Ratas Wistar , Factor de Necrosis Tumoral alfa , Colágeno
5.
Int J Mol Sci ; 24(24)2023 Dec 08.
Artículo en Inglés | MEDLINE | ID: mdl-38139099

RESUMEN

Pathological cardiac remodeling is associated with cardiovascular disease and can lead to heart failure. Nuclear factor-kappa B (NF-κB) is upregulated in the hypertrophic heart. Moreover, the expression of the G-protein-coupled receptor kinase 2 (GRK2) is increased and linked to the progression of heart failure. The inhibitory effects of paroxetine on GRK2 have been established. However, its protective effect on IκBα/NFκB signaling has not been elucidated. This study investigated the cardioprotective effect of paroxetine in an animal model of cardiac hypertrophy (CH), focusing on its effect on GRK2-mediated NF-κB-regulated expression of prohypertrophic and profibrotic genes. Wistar albino rats were administered normal saline, paroxetine, or fluoxetine, followed by isoproterenol to induce CH. The cardioprotective effects of the treatments were determined by assessing cardiac injury, inflammatory biomarker levels, histopathological changes, and hypertrophic and fibrotic genes in cardiomyocytes. Paroxetine pre-treatment significantly decreased the HW/BW ratio (p < 0.001), and the expression of prohypertrophic and profibrotic genes Troponin-I (p < 0.001), BNP (p < 0.01), ANP (p < 0.001), hydroxyproline (p < 0.05), TGF-ß1 (p < 0.05), and αSMA (p < 0.01) as well as inflammatory markers. It also markedly decreased pIκBα, NFκB(p105) subunit expression (p < 0.05) and phosphorylation. The findings suggest that paroxetine prevents pathological cardiac remodeling by inhibiting the GRK2-mediated IκBα/NF-κB signaling pathway.


Asunto(s)
Insuficiencia Cardíaca , FN-kappa B , Ratas , Animales , FN-kappa B/metabolismo , Paroxetina/farmacología , Paroxetina/metabolismo , Inhibidor NF-kappaB alfa/metabolismo , Isoproterenol/toxicidad , Quinasa 2 del Receptor Acoplado a Proteína-G/metabolismo , Remodelación Ventricular , Miocitos Cardíacos/metabolismo , Cardiomegalia/inducido químicamente , Cardiomegalia/tratamiento farmacológico , Cardiomegalia/metabolismo , Insuficiencia Cardíaca/metabolismo , Ratas Wistar , Expresión Génica
6.
Int J Mol Sci ; 24(7)2023 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-37047505

RESUMEN

Diabetic nephropathy (DN) is a microvascular complication of diabetes mellitus. This study examined the therapeutic effects of sitagliptin, a dipeptidyl peptidase inhibitor, on DN and explored the underlying mechanism. Male Wistar albino rats (n = 12) were intraperitoneally administered a single dose of streptozotocin (30 mg/kg) to induce diabetes. Streptozotocin-treated and untreated rats (n = 12) were further divided into normal control, normal sitagliptin-treated control, diabetic control, and sitagliptin-treated diabetic groups (n = 6 in each). The normal and diabetic control groups received normal saline, whereas the sitagliptin-treated control and diabetic groups received sitagliptin (100 mg/kg, p.o.). We assessed the serum levels of DN and inflammatory biomarkers. Protein tyrosine phosphatase 1 B (PTP1B), phosphorylated Janus kinase 2 (P-JAK2), and phosphorylated signal transducer activator of transcription (P-STAT3) levels in kidney tissues were assessed using Western blotting, and kidney sections were examined histologically. Sitagliptin reduced DN and inflammatory biomarkers and the expression of PTP1B, p-JAK2, and p-STAT3 (p < 0.001) and improved streptozotocin-induced histological changes in the kidney. These results demonstrate that sitagliptin ameliorates inflammation by inhibiting DPP-4 and consequently modulating the PTP1B-related JAK/STAT axis, leading to the alleviation of DN.


Asunto(s)
Diabetes Mellitus Tipo 2 , Nefropatías Diabéticas , Animales , Ratas , Masculino , Fosfato de Sitagliptina/farmacología , Fosfato de Sitagliptina/uso terapéutico , Diabetes Mellitus Tipo 2/metabolismo , Nefropatías Diabéticas/metabolismo , Quinasas Janus/metabolismo , Estreptozocina/farmacología , Monoéster Fosfórico Hidrolasas/metabolismo , Transducción de Señal , Ratas Wistar , Factores de Transcripción STAT/metabolismo , Biomarcadores
7.
BMC Cardiovasc Disord ; 23(1): 153, 2023 03 24.
Artículo en Inglés | MEDLINE | ID: mdl-36964489

RESUMEN

BACKGROUND: Myocardial infarction (MI) is considered a public health problem. According to the World Health Organization, MI is a leading cause of death and comorbidities worldwide. Activation of the α1A adrenergic receptor is a contributing factor to the development of MI. Tamsulosin, an α1A adrenergic blocker, has gained wide popularity as a medication for the treatment of benign prostatic hyperplasia. Limited evidence from previous studies has revealed the potential cardioprotective effects of tamsulosin, as its inhibitory effect on the α1A adrenoceptor protects the heart by acting on the smooth muscle of blood vessels, which results in hypotension; however, its effect on the infarcted heart is still unclear. The mechanisms of the expected cardioprotective effects mediated by tamsulosin are not yet understood. Transforming growth factor-beta (TGF-ß), a mediator of fibrosis, is considered an attractive therapeutic target for remodeling after MI. The role of α1A adrenoceptor inhibition or its relationships with integrin-linked kinase (ILK) and TGF-ß/small mothers against decapentaplegic (Smad) signaling pathways in attenuating MI are unclear. The present study was designed to investigate whether tamsulosin attenuates MI by modulating an ILK-related TGF-ß/Smad pathway. METHODS: Twenty-four adult male Wistar rats were randomly divided into 4 groups: control, ISO, TAM, and ISO + TAM. ISO (150 mg/kg, intraperitoneally) was injected on Days 20 and 21 to induce MI. Tamsulosin (0.8 mg/kg, orally) was administered for 21 days, prior to ISO injection for 2 consecutive days. Heart-to-body weight ratios and cardiac and fibrotic biomarker levels were subsequently determined. ILK, TGF-ß1, p-Smad2/3, and collagen III protein expression levels were determined using biomolecular methods. RESULTS: Tamsulosin significantly attenuated the relative heart-to-body weight index (p < 0.5) and creatine kinase-MB level (p < 0.01) compared with those in the ISO control group. While ISO resulted in superoxide anion production and enhanced oxidative damage, tamsulosin significantly prevented this damage through antioxidant defense mechanisms, increasing glutathione and superoxide dismutase levels (p < 0.05) and decreasing lipid peroxide oxidation levels (p < 0.01). The present data revealed that tamsulosin reduced TGF-ß/p-Smad2/3 expression and enhanced ILK expression. CONCLUSION: Tamsulosin may exert a cardioprotective effect by modulating the ILK-related TGF-ß/Smad signaling pathway. Thus, tamsulosin may be a useful therapeutic approach for preventing MI.


Asunto(s)
Infarto del Miocardio , Ratas , Animales , Masculino , Tamsulosina/metabolismo , Tamsulosina/uso terapéutico , Ratas Sprague-Dawley , Ratas Wistar , Infarto del Miocardio/tratamiento farmacológico , Infarto del Miocardio/prevención & control , Infarto del Miocardio/metabolismo , Factor de Crecimiento Transformador beta1/metabolismo , Factor de Crecimiento Transformador beta/metabolismo , Factor de Crecimiento Transformador beta/uso terapéutico , Transducción de Señal , Peso Corporal , Miocardio/patología , Fibrosis
8.
Mol Med Rep ; 27(3)2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36799169

RESUMEN

The P2X7 purinergic receptor (P2X7R) is a non­selective cation channel activated by high levels of adenosine triphosphate that are commonly present in serious conditions. Activation of this purinergic receptor is closely related to the development of various disease states including inflammatory and neurodegenerative disorders, orthopedic diseases and types of cancer. Accumulating evidence has shown that the P2X7R plays a crucial role in the development of various heart diseases. For example, activation of P2X7Rs may alleviate myocardial ischemia­reperfusion injury by releasing endogenous cardiac protective substances. In contrast to these findings, activation of P2X7Rs can promote the development of acute myocardial infarction and myocarditis by inducing inflammatory responses. Activation of these receptors can also contribute to the development of different types of cardiomyopathies including diabetic cardiomyopathy, dilated cardiomyopathy and hypertrophic cardiomyopathy by inducing cardiac hypertrophy, fibrosis and apoptosis. Notably, inhibition of P2X7Rs can improve cardiac structure and function abnormalities following acute myocardial infarction, reduction of inflammatory responses following myocarditis and attenuation of the cardiomyopathy process. Furthermore, recent evidence has demonstrated that P2X7Rs are highly active in patients infected with coronavirus disease­2019 (COVID­19). Hyperactivation of P2X7Rs in COVID­19 may induce severe myocardial injury through the activation of several signaling pathways. The present study reviewed the important role of the P2X7R in cardiac dysfunctions and discusses its use as a possible new therapeutic approach for the prevention and treatment of several myocardial diseases.


Asunto(s)
COVID-19 , Infarto del Miocardio , Miocarditis , Humanos , Adenosina Trifosfato/farmacología , COVID-19/genética , Infarto del Miocardio/genética , Miocarditis/genética , Antagonistas del Receptor Purinérgico P2X/farmacología , Antagonistas del Receptor Purinérgico P2X/uso terapéutico , Receptores Purinérgicos P2X7/genética
9.
Artículo en Inglés | MEDLINE | ID: mdl-35627799

RESUMEN

Conducted during the second wave of the pandemic, this cross-sectional study examined the link between sleep quality, physical activity, exposure, and the impact of COVID-19 as predictors of mental health in Saudi undergraduate students. A convenience sample of 207 participants were recruited, 89% of whom were females and 94% were single. The measures included questionnaires on the level of exposure and the perceived impact of COVID-19, a physical activity measure, GAD-7, PHQ-9, and PSQI. The results indicated that approximately 43% of participants exhibited moderate anxiety, and 50% were at risk of depression. Overall, 63.93% of students exposed to strict quarantine for at least 14 days (n = 39) exhibited a high risk of developing depression (χ2(1) = 6.49, p < 0.05, ϕ = 0.18). A higher risk of depression was also found in students whose loved ones lost their jobs (χ2(1) = 4.24, p < 0.05, ϕ = 0.14). Moreover, there was also a strong association between depression and anxiety (ß = 0.33, p < 0.01), sleep quality (ß = 0.32, p < 0.01), and the perceived negative impact of COVID-19 on socio-economic status (ß = 0.26, p < 0.05), explaining 66.67% of depression variance. Our study highlights the socio-economic impact of this pandemic and the overwhelming prevalence of depression.


Asunto(s)
COVID-19 , Ansiedad/epidemiología , Ansiedad/psicología , COVID-19/epidemiología , Estudios Transversales , Depresión/epidemiología , Depresión/psicología , Ejercicio Físico , Femenino , Humanos , Masculino , Pandemias , Arabia Saudita/epidemiología , Calidad del Sueño , Estudiantes/psicología , Universidades
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...