Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Drug Dev Res ; 85(2): e22166, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38424708

RESUMEN

Hyperlipidemia is a common clinically encountered health condition worldwide that promotes the development and progression of cardiovascular diseases, including atherosclerosis. Berberine (BBR) is a natural product with acknowledged anti-inflammatory, antioxidant, and metabolic effects. This study evaluated the effect of BBR on lipid alterations, oxidative stress, and inflammatory response in rats with acute hyperlipidemia induced by poloxamer-407 (P-407). Rats were pretreated with BBR (25 and 50 mg/kg) for 14 days and acute hyperlipidemia was induced by a single dose of P-407 (500 mg/kg). BBR ameliorated hypercholesterolemia, hypertriglyceridemia, and plasma lipoproteins in P-407-adminsitered rats. Plasma lipoprotein lipase (LPL) activity was decreased, and hepatic 3-hydroxy-3-methylglutaryl CoA (HMG-CoA) reductase activity was enhanced in hyperlipidemic rats. The expression of low-density lipoprotein receptor (LDL-R) and ATP-binding cassette transporter 1 (ABCA1) was downregulated in hyperlipidemic rats. BBR enhanced LPL activity, upregulated LDL-R, and ABCA1, and suppressed HMG-CoA reductase in P-407-administered rats. Pretreatment with BBR ameliorated lipid peroxidation, nitric oxide (NO), pro-inflammatory mediators (interleukin [IL]-6, IL-1ß, tumor necrosis factor [TNF]-α, interferon-γ, IL-4 and IL-18) and enhanced antioxidants. In addition, BBR suppressed lymphocyte ecto-nucleoside triphosphate diphosphohydrolase (E-NTPDase) and ecto-adenosine deaminase (E-ADA) as well as NO and TNF-α release by macrophages isolated from normal and hyperlipidemic rats. In silico investigations revealed the binding affinity of BBR toward LPL, HMG-CoA reductase, LDL-R, PSK9, ABCA1, and E-NTPDase. In conclusion, BBR effectively prevented acute hyperlipidemia and its associated inflammatory responses by modulating LPL, cholesterolgenesis, cytokine release, and lymphocyte E-NTPDase and E-ADA. Therefore, BBR is an effective and safe natural compound that might be employed as an adjuvant against hyperlipidemia and its associated inflammation.


Asunto(s)
Berberina , Hiperlipidemias , Ratas , Animales , Berberina/farmacología , Berberina/uso terapéutico , Hiperlipidemias/tratamiento farmacológico , Inflamación/tratamiento farmacológico , Inflamación/patología , Estrés Oxidativo , Interleucina-6/metabolismo , Antioxidantes/uso terapéutico , Linfocitos/metabolismo , Linfocitos/patología , Factor de Necrosis Tumoral alfa/metabolismo , Oxidorreductasas/metabolismo , Oxidorreductasas/farmacología , Oxidorreductasas/uso terapéutico
2.
Saudi Pharm J ; 31(10): 101766, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37731943

RESUMEN

Cisplatin (CIS) is a chemotherapeutic medication for the treatment of cancer. However, hepatotoxicity is among the adverse effects limiting its use. Caroxylon salicornicum is traditionally used for treating inflammatory diseases. In this investigation, three flavonoids, four coumarins, and three sterols were detected in the petroleum ether fraction of C. salicornicum (PEFCS). The isolated phytochemicals exhibited binding affinity toward Keap1, NF-κB, and SIRT1 in silico. The hepatoprotective role of PEFCS (100, 200 and 400 mg/kg) was investigated in vivo. Rats received PEFCS for 14 days and CIS on day 15. CIS increased ALT, AST and ALP and caused tissue injury along with increased ROS, MDA, and NO. Hepatic NF-κB p65, pro-inflammatory mediators, Bax and caspase-3 were increased in CIS-treated animals while antioxidants and Bcl-2 were decreased. PEFCS mitigated hepatocyte injury, and ameliorated transaminases, ALP, oxidative stress (OS) and inflammatory markers. PEFCS downregulated pro-apoptosis markers and boosted Bcl-2 and antioxidants. In addition, PEFCS upregulated Nrf2, HO-1, and SIRT1 in CIS-administered rats. In conclusion, PEFCS is rich in beneficial phytoconstituents and conferred protection against liver injury by attenuating OS and inflammation and upregulating Nrf2 and SIRT1.

3.
Saudi Pharm J ; 31(10): 101762, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37701752

RESUMEN

Garcinia livingstonei is a traditional herbal medicine that showed beneficial health effects and bioactivities. Four compounds have been isolated from the plant leaves and were elucidated as lupeol, betulin, podocarpusflavone A, and amentoflavone. The inhibitory activities of G. livingstonei extract and isolated metabolites against fatty acid synthase (FAS), α-glucosidase, and xanthine oxidase (XO) were investigated in vitro. The affinity of the compounds toward the studied enzymes was investigated in silico. The plant extract inhibited FAS, α-glucosidase, and XO with IC50 values of 26.34, 67.88, and 33.05 µg/mL, respectively. Among the isolated metabolites, betulin exhibited the most inhibitory activity against α-glucosidase and XO with IC50 values of 38.96 and 30.94 µg/mL, respectively. Podocarpusflavone A and betulin were the most potent inhibitors of FAS with IC50 values of 24.08 and 27.96 µg/mL, respectively. Computational studies corroborated these results highlighting the interactions between metabolites and the enzymes. In conclusion, G. livingstonei and its constituents possess the potential to modulate enzymes involved in metabolism and oxidative stress.

4.
Int Immunopharmacol ; 124(Pt A): 110833, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37634447

RESUMEN

Pancreatitis is a serious effect of the heavy metal cadmium (Cd) and inflammation and oxidative stress (OS) are implicated in Cd-induced pancreatic injury. This study evaluated the effect of the melatonin receptor agonist agomelatine (AGM) on Cd-induced acute pancreatitis (AP), pointing to its modulatory effect on inflammation, OS, and Nrf2/HO-1 pathway. Rats were supplemented with AGM orally for 14 days and a single injection of cadmium chloride (CdCl2) on day 7. Cd increased serum amylase and lipase and caused pancreatic endocrine and exocrine tissue injury. Malondialdehyde (MDA), nitric oxide (NO) and myeloperoxidase (MPO) were elevated, nuclear factor (NF)-kB p65, inducible NO synthase (iNOS), interleukin (IL)-6, tumor necrosis factor (TNF)-α and CD40 were upregulated, and antioxidants were decreased in the pancreas of Cd-administered rats. AGM ameliorated serum amylase and lipase and pancreatic OS, NF-kB p65, CD40, pro-inflammatory mediators and caspase-3, prevented tissue injury and enhanced antioxidants. AGM downregulated Keap1 and enhanced Nrf2 and HO-1 in the pancreas of Cd-administered rats. In silico findings revealed the binding affinity of AGM with Keap1, HO-1, CD40L and caspase-3. In conclusion, AGM protected against AP induced by Cd by preventing inflammation, OS and apoptosis and modulating Nrf2/HO-1 pathway.

5.
Front Pharmacol ; 14: 1204641, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37397470

RESUMEN

Background: Type 2 diabetes (T2D) is a metabolic disorder characterized by insulin resistance (IR) and hyperglycemia. Plants are valuable sources of therapeutic agents for the management of T2D. Euphorbia peplus has been widely used as a traditional medicine for the treatment of various diseases, but its beneficial role in T2D has not been fully explored. Methods: The anti-diabetic efficacy of E. peplus extract (EPE) was studied using rats with T2D induced by high-fat diet (HFD) and streptozotocin (STZ). The diabetic rats received 100, 200, and 400 mg/kg EPE for 4 weeks. Results: Phytochemical fractionation of the aerial parts of E. peplus led to the isolation of seven known flavonoids. Rats with T2D exhibited IR, impaired glucose tolerance, decreased liver hexokinase and glycogen, and upregulated glycogen phosphorylase, glucose-6-phosphatase (G-6-Pase), and fructose-1,6-bisphosphatase (F-1,6-BPase). Treatment with 100, 200, and 400 mg/kg EPE for 4 weeks ameliorated hyperglycemia, IR, liver glycogen, and the activities of carbohydrate-metabolizing enzymes. EPE attenuated dyslipidemia, serum transaminases, tumor necrosis factor (TNF)-α, interleukin (IL)-1ß and liver lipid accumulation, nuclear factor (NF)-κB p65, and lipid peroxidation, nitric oxide and enhanced antioxidants. All EPE doses upregulated serum adiponectin and liver peroxisome proliferator-activated receptor γ (PPARγ) in HFD/STZ-induced rats. The isolated flavonoids showed in silico binding affinity toward hexokinase, NF-κB, and PPARγ. Conclusion: E. peplus is rich in flavonoids, and its extract ameliorated IR, hyperglycemia, dyslipidemia, inflammation and redox imbalance, and upregulated adiponectin and PPARγ in rats with T2D.

6.
RSC Adv ; 13(18): 12361-12374, 2023 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-37091601

RESUMEN

Plants of the genus Centaurea have been widely used as natural therapeutics in different countries. This study investigated the antioxidant-structure activity relationship of eight flavonoids isolated from Centaurea scoparia using DFT studies and in vitro radical scavenging and xanthine oxidase (XO) inhibition assays, and to correlate the theoretical values with the experimental findings. Docking analysis was carried out to explore the binding modes of the isolated phytochemicals with XO and bovine ß-lactoglobulin (BLG). Interactions of the isolated compounds with BLG were studied using molecular dynamics (MD) simulations which revealed the involvement of hydrogen bonding. The root-mean-square deviation (RMSD) of BLG and BLG-flavonoid complexes reached equilibrium and fluctuated during the 10 ns MD simulations. The radius of gyration (Rg) and solvent accessible surface area (SASA) revealed that various systems were stabilized at approximately 2500 ps. In addition, the RMS fluctuations profile indicated that the ligand's active site exerted rigidity behavior during the simulation. The hydrogen atom transfer (HAT) and the energies of hydrogen abstractions were estimated by calculating the bond dissociation enthalpy (BDE) of O-H in gas phase and water. The isolated compounds showed radical scavenging and XO inhibitory activities along with binding affinity with XO as revealed in silico. The BDE was linked to the radical scavenging processes occurring in polar solvents. These processes are single electron transfer followed by proton transfer (SET-PT) and sequential proton loss electron transfer (SPLET). Our calculations indicated the agreement between the calculated results and the experimentally measured antioxidant activity of the flavonoids isolated from C. scoparia.

7.
Life Sci ; 322: 121688, 2023 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-37030617

RESUMEN

Non-alcoholic fatty liver disease (NAFLD) is a common chronic hepatic disorder characterized by hepatic lipid accumulation. This study explored the effect of betulin (BE), a terpenoid with promising antioxidant, anti-inflammatory and insulin sensitizing effects, on NAFLD induced by high fat diet (HFD). Rats received HFD and BE (15 and 30 mg/kg) for 12 weeks and blood and liver samples were collected for analyses. HFD caused hyperlipidemia, cholesterol and triglycerides accumulation in the liver, hepatocellular ballooning, fibrosis, insulin resistance (IR), lipid peroxidation (LPO), and NF-kB p65 upregulation. BE ameliorated serum and liver lipids, blood glucose and insulin, liver LPO, prevented steatosis and fibrosis, suppressed NF-kB p65 and enhanced antioxidants in HFD-fed rats. BE downregulated acetyl-CoA carboxylase (ACC1) and fatty acid synthase (FAS), and upregulated Nrf2, HO-1 and SIRT1 in the liver of HFD-fed rats. In silico investigations revealed the binding affinity of BE towards FAS, NF-kB, Keap1, HO-1 and SIRT1. In conclusion, BE attenuated HFD-induced NAFLD by ameliorating hyperlipidemia, IR, lipogenesis, liver lipid accumulation, and oxidative stress. The protective effect of BE was associated with enhanced Nrf2/HO-1 signaling and SIRT1.


Asunto(s)
Resistencia a la Insulina , Enfermedad del Hígado Graso no Alcohólico , Triterpenos , Animales , Ratas , Antioxidantes/farmacología , Antioxidantes/metabolismo , Dieta Alta en Grasa/efectos adversos , Fibrosis , Insulina/metabolismo , Resistencia a la Insulina/fisiología , Proteína 1 Asociada A ECH Tipo Kelch/metabolismo , Lípidos/farmacología , Hígado/metabolismo , Factor 2 Relacionado con NF-E2/metabolismo , FN-kappa B/metabolismo , Enfermedad del Hígado Graso no Alcohólico/etiología , Enfermedad del Hígado Graso no Alcohólico/prevención & control , Estrés Oxidativo , Sirtuina 1/metabolismo , Triterpenos/farmacología , Triterpenos/metabolismo
8.
Life Sci ; 321: 121612, 2023 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-36948387

RESUMEN

Arbutin is a glycosylated hydroquinone with antioxidant and anti-hyperglycemia effects. However, its beneficial effects in type 2 diabetes (T2D) were not clarified. This study evaluated the effect of arbutin on hyperglycemia, dyslipidemia, insulin resistance, oxidative stress, and inflammatory response in T2D. Rats induced by high fat diet and streptozotocin were treated with arbutin (25 and 50 mg/kg) for 4 weeks. Diabetic rats exhibited glucose intolerance, elevated HbA1c%, reduced insulin, and high HOMA-IR. Liver glycogen and hexokinase activity were decreased in T2D rats while glucose-6-phosphatase (G6Pase), fructose-1,6- biphosphatase (FBPase), and glycogen phosphorylase were upregulated. Circulating and hepatic cholesterol and triglycerides and serum transaminases were elevated in T2D rats. Arbutin ameliorated hyperglycemia, dyslipidemia, insulin deficiency and resistance, and liver glycogen and alleviated the activity of carbohydrate-metabolizing enzymes. Both doses of arbutin decreased serum transaminases and resistin, and liver lipids, TNF-α, IL-6, malondialdehyde and nitric oxide, downregulated liver resistin and fatty acid synthase, and increased serum and liver adiponectin, and liver reduced glutathione (GSH), superoxide dismutase (SOD) and catalase (CAT). These effects were associated with the upregulation of hepatic PPARγ. Arbutin inhibited α-glucosidase in vitro and in silico investigations revealed the ability of arbutin to bind PPARγ, hexokinase, and α-glucosidase. In conclusion, arbutin effectively ameliorated glucose intolerance, insulin resistance, dyslipidemia, inflammation, and oxidative stress, and modulated carbohydrate-metabolizing enzymes, antioxidants, adipokines and PPARγ in T2D in rats.


Asunto(s)
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 2 , Dislipidemias , Intolerancia a la Glucosa , Resistencia a la Insulina , Ratas , Animales , PPAR gamma/metabolismo , Dieta Alta en Grasa/efectos adversos , Diabetes Mellitus Tipo 2/metabolismo , Resistina/metabolismo , Resistina/farmacología , Resistina/uso terapéutico , Estreptozocina/farmacología , Arbutina/farmacología , Arbutina/uso terapéutico , Adipoquinas/metabolismo , Diabetes Mellitus Experimental/metabolismo , Hexoquinasa/metabolismo , Glucógeno Hepático/metabolismo , alfa-Glucosidasas/metabolismo , Glucemia/metabolismo , Estrés Oxidativo , Insulina/metabolismo , Dislipidemias/tratamiento farmacológico , Dislipidemias/metabolismo
9.
Front Pharmacol ; 14: 1134812, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36814487

RESUMEN

Background: The star fruit [Averrhoa carambola L (Oxalidaceae)] is traditionally used in the treatment of many ailments in many countries. It possesses several pharmacological activities, including antioxidant and anti-inflammatory effects. However, it contains the neurotoxic caramboxin and its high content of oxalic acid limits its consumption by individuals with compromised kidney function. This study assessed the anti-hyperlipidemic and antioxidant activities of different fractions of the methanolic extract of A. carambola leaves (MEACL). Methods: The antioxidant activity was investigated using FRAP, and ABTS and DPPH radical-scavenging assays and the inhibitory activity toward pancreatic lipase (PL) and HMG-CoA reductase was assayed in vitro. Acute hyperlipidemia was induced by poloxamer-407 (P-407) in rats and different fractions of MEACL (n-hexane, chloroform, n-butanol, ethyl acetate (EA), water, and chloroform) were orally administered. Cholesterol and triglycerides were determined at 0, 12, 24, and 48 h and LDL-C, vLDL-C, HDL-C, lipid peroxidation (LPO) and antioxidants were assayed after 48 h. The expression of ABCA1, ABCG5, ABCG8, LDL-R, SREBP-1, and SREBP-2 and the activity of HMG-CoA reductase were assayed in the liver of P-407-administered rats treated with the EA fraction. Results: The in vitro data revealed potent radical-scavenging activities of MEACL fractions with the most potent effect showed by the EA fraction that also suppressed the activities of HMG-CoA reductase and PL. In P-407-induced hyperlipidemic rats, all fractions prevented dyslipidemia as shown by the decrease in total cholesterol, triglycerides, LDL-C, vLDL-C and atherogenic index. MEACL and its fractions prevented LPO and boosted GSH, superoxide dismutase, glutathione peroxidase, and catalase in P-407-administered rats. The EA fraction showed more effective anti-hyperlipidemic and antioxidant effects than other fractions and downregulated SREBP-2 while upregulated ABCA1 and LDL-R and ameliorated LPL and HMG-CoA reductase in hyperlipidemic rats. Conclusion: MEACL showed in vitro and in vivo antioxidant activity and the EA fraction significantly ameliorated dyslipidemia in a rat model of P-407-induced acute hyperlipidemia by modulating LPL, PL, HMG-CoA reductase, and cholesterolgenesis-related factors. Therefore, the leaves of A. carambola represent a safe alternative for the star fruit particularly in kidney disease patients, and the EA is the most effective anti-hyperlipidemic and antioxidant fraction.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA