Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Transpl Int ; 37: 12468, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38699175

RESUMEN

Kidney organoids are an innovative tool in transplantation research. The aim of the present study was to investigate whether kidney organoids are susceptible for allo-immune attack and whether they can be used as a model to study allo-immunity in kidney transplantation. Human induced pluripotent stem cell-derived kidney organoids were co-cultured with human peripheral blood mononuclear cells (PBMC), which resulted in invasion of allogeneic T-cells around nephron structures and macrophages in the stromal cell compartment of the organoids. This process was associated with the induction of fibrosis. Subcutaneous implantation of kidney organoids in immune-deficient mice followed by adoptive transfer of human PBMC led to the invasion of diverse T-cell subsets. Single cell transcriptomic analysis revealed that stromal cells in the organoids upregulated expression of immune response genes upon immune cell invasion. Moreover, immune regulatory PD-L1 protein was elevated in epithelial cells while genes related to nephron differentiation and function were downregulated. This study characterized the interaction between immune cells and kidney organoids, which will advance the use of kidney organoids for transplantation research.


Asunto(s)
Trasplante de Riñón , Riñón , Organoides , Humanos , Organoides/inmunología , Animales , Riñón/inmunología , Ratones , Técnicas de Cocultivo , Leucocitos Mononucleares/inmunología , Células Madre Pluripotentes Inducidas/citología , Linfocitos T/inmunología , Sistema Inmunológico , Antígeno B7-H1/metabolismo , Macrófagos/inmunología
2.
Am J Transplant ; 2024 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-38447886

RESUMEN

The extent to which tissue-resident memory T (TRM) cells in transplanted organs possess alloreactivity is uncertain. This study investigates the alloreactive potential of TRM cells in kidney explants from 4 patients who experienced severe acute rejection leading to graft loss. Alloreactive T cell receptor (TCR) clones were identified in pretransplant blood samples through mixed lymphocyte reactions, followed by single-cell RNA and TCR sequencing of the proliferated recipient T cells. Subsequently, these TCR clones were traced in the TRM cells of kidney explants, which were also subjected to single-cell RNA and TCR sequencing. The proportion of recipient-derived TRM cells expressing an alloreactive TCR in the 4 kidney explants varied from 0% to 9%. Notably, these alloreactive TCRs were predominantly found among CD4+ and CD8+ TRM cells with an effector phenotype. Intriguingly, these clones were present not only in recipient-derived TRM cells but also in donor-derived TRM cells, constituting up to 4% of the donor population, suggesting the presence of self-reactive TRM cells. Overall, our study demonstrates that T cells with alloreactive potential present in the peripheral blood prior to transplantation can infiltrate the kidney transplant and adopt a TRM phenotype.

3.
Cancers (Basel) ; 16(4)2024 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-38398132

RESUMEN

Tumors with a pathogenic BRCA1/2 mutation are homologous recombination (HR)-deficient (HRD) and consequently sensitive to platinum-based chemotherapy and Poly-[ADP-Ribose]-Polymerase inhibitors (PARPi). We hypothesized that functional HR status better reflects real-time HR status than BRCA1/2 mutation status. Therefore, we determined the functional HR status of 53 breast cancer (BC) and 38 ovarian cancer (OC) cell lines by measuring the formation of RAD51 foci after irradiation. Discrepancies between functional HR and BRCA1/2 mutation status were investigated using exome sequencing, methylation and gene expression data from 50 HR-related genes. A pathogenic BRCA1/2 mutation was found in 10/53 (18.9%) of BC and 7/38 (18.4%) of OC cell lines. Among BRCA1/2-mutant cell lines, 14/17 (82.4%) were HR-proficient (HRP), while 1/74 (1.4%) wild-type cell lines was HRD. For most (80%) cell lines, we explained the discrepancy between functional HR and BRCA1/2 mutation status. Importantly, 12/14 (85.7%) BRCA1/2-mutant HRP cell lines were explained by mechanisms directly acting on BRCA1/2. Finally, functional HR status was strongly associated with COSMIC single base substitution signature 3, but not BRCA1/2 mutation status. Thus, the majority of BRCA1/2-mutant cell lines do not represent a suitable model for HRD. Moreover, exclusively determining BRCA1/2 mutation status may not suffice for platinum-based chemotherapy or PARPi patient selection.

4.
JHEP Rep ; 6(2): 100980, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38314025

RESUMEN

Background & Aims: HBsAg secretion may impact immune responses to chronic HBV infection. Thus, therapeutic approaches to suppress HBsAg production are being investigated. Our study aims to examine the immunomodulatory effects of high and low levels of circulating HBsAg and thereby improve our understanding of anti-HBV immunity. Methods: An optimized 10x Genomics single-cell RNA sequencing workflow was applied to blood samples and liver fine-needle aspirates from 18 patients undergoing tenofovir/entecavir (NUC) treatment for chronic HBV infection. They were categorized based on their HBsAg levels: high (920-12,447 IU/ml) or low (1-100 IU/ml). Cluster frequencies, differential gene expression, and phenotypes were analyzed. Results: In the blood of HBV-infected patients on NUC, the proportion of KLRC2+ "adaptive" natural killer (NK) cells was significantly lower in the HBsAg-high group and, remarkably, both KLRC2+ NK and KLRG1+ CD8 T cells display enrichment of lymphocyte activation-associated gene sets in the HBsAg-low group. High levels of HBsAg were associated with mild immune activation in the liver. However, no suppression of liver-resident CXCR6+ NCAM1+ NK or CXCR6+ CD69+ CD8 T cells was detected, while memory B cells showed signs of activation in both the blood and liver. Conclusions: Among NUC-treated patients, we observed a minimal impact of HBsAg on leukocyte populations in the blood and liver. However, for the first time, we found that HBsAg has distinct effects, restricted to NK-, CD8 T-, and memory B-cell subsets, in the blood and liver. Our findings are highly relevant for current clinical studies evaluating treatment strategies aimed at suppressing HBsAg production and reinvigorating immunity to HBV. Impact and implications: This study provides unique insight into the impact of HBsAg on gene expression levels of immune cell subsets in the blood and liver, particularly in the context of NUC-treated chronic HBV infection. It holds significant relevance for current and future clinical studies evaluating treatment strategies aimed at suppressing HBsAg production and reinvigorating immunity to HBV. Our findings raise questions about the effectiveness of such treatment strategies and challenge the previously hypothesized immunomodulatory effects of HBsAg on immune responses against HBV.

5.
Sci Adv ; 9(47): eadj4846, 2023 11 24.
Artículo en Inglés | MEDLINE | ID: mdl-38000021

RESUMEN

Patients with advanced chronic kidney disease (CKD) mostly die from sudden cardiac death and recurrent heart failure. The mechanisms of cardiac remodeling are largely unclear. To dissect molecular and cellular mechanisms of cardiac remodeling in CKD in an unbiased fashion, we performed left ventricular single-nuclear RNA sequencing in two mouse models of CKD. Our data showed a hypertrophic response trajectory of cardiomyocytes with stress signaling and metabolic changes driven by soluble uremia-related factors. We mapped fibroblast to myofibroblast differentiation in this process and identified notable changes in the cardiac vasculature, suggesting inflammation and dysfunction. An integrated analysis of cardiac cellular responses to uremic toxins pointed toward endothelin-1 and methylglyoxal being involved in capillary dysfunction and TNFα driving cardiomyocyte hypertrophy in CKD, which was validated in vitro and in vivo. TNFα inhibition in vivo ameliorated the cardiac phenotype in CKD. Thus, interventional approaches directed against uremic toxins, such as TNFα, hold promise to ameliorate cardiac remodeling in CKD.


Asunto(s)
Insuficiencia Cardíaca , Insuficiencia Renal Crónica , Ratones , Animales , Humanos , Factor de Necrosis Tumoral alfa/genética , Tóxinas Urémicas , Remodelación Ventricular , Insuficiencia Cardíaca/etiología
6.
Blood Cancer Discov ; 4(5): 394-417, 2023 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-37470778

RESUMEN

Cancer initiation is orchestrated by an interplay between tumor-initiating cells and their stromal/immune environment. Here, by adapted single-cell RNA sequencing, we decipher the predicted signaling between tissue-resident hematopoietic stem/progenitor cells (HSPC) and their neoplastic counterparts with their native niches in the human bone marrow. LEPR+ stromal cells are identified as central regulators of hematopoiesis through predicted interactions with all cells in the marrow. Inflammatory niche remodeling and the resulting deprivation of critical HSPC regulatory factors are predicted to repress high-output hematopoietic stem cell subsets in NPM1-mutated acute myeloid leukemia (AML), with relative resistance of clonal cells. Stromal gene signatures reflective of niche remodeling are associated with reduced relapse rates and favorable outcomes after chemotherapy across all genetic risk categories. Elucidation of the intercellular signaling defining human AML, thus, predicts that inflammatory remodeling of stem cell niches drives tissue repression and clonal selection but may pose a vulnerability for relapse-initiating cells in the context of chemotherapeutic treatment. SIGNIFICANCE: Tumor-promoting inflammation is considered an enabling characteristic of tumorigenesis, but mechanisms remain incompletely understood. By deciphering the predicted signaling between tissue-resident stem cells and their neoplastic counterparts with their environment, we identify inflammatory remodeling of stromal niches as a determinant of normal tissue repression and clinical outcomes in human AML. See related commentary by Lisi-Vega and Méndez-Ferrer, p. 349. This article is featured in Selected Articles from This Issue, p. 337.


Asunto(s)
Células Madre Hematopoyéticas , Leucemia Mieloide Aguda , Humanos , Médula Ósea , Leucemia Mieloide Aguda/genética , Hematopoyesis/genética , Células del Estroma
7.
Hemasphere ; 7(2): e824, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36741355

RESUMEN

RUNX1 familial platelet disorder (RUNX1-FPD) is a hematopoietic disorder caused by germline loss-of-function mutations in the RUNX1 gene and characterized by thrombocytopathy, thrombocytopenia, and an increased risk of developing hematologic malignancies, mostly of myeloid origin. Disease pathophysiology has remained incompletely understood, in part because of a shortage of in vivo models recapitulating the germline RUNX1 loss of function found in humans, precluding the study of potential contributions of non-hematopoietic cells to disease pathogenesis. Here, we studied mice harboring a germline hypomorphic mutation of one Runx1 allele with a loss-of-function mutation in the other Runx1 allele (Runx1 L148A/- mice), which display many hematologic characteristics found in human RUNX1-FPD patients. Runx1 L148A/- mice displayed robust and pronounced thrombocytopenia and myeloid-biased hematopoiesis, associated with an HSC intrinsic reconstitution defect in lymphopoiesis and expansion of myeloid progenitor cell pools. We demonstrate that specific deletion of Runx1 from bone marrow stromal cells in Prrx1-cre;Runx1 fl/fl mice did not recapitulate these abnormalities, indicating that the hematopoietic abnormalities are intrinsic to the hematopoietic lineage, and arguing against a driving role of the bone marrow microenvironment. In conclusion, we report a RUNX1-FPD mouse model faithfully recapitulating key characteristics of human disease. Findings do not support a driving role of ancillary, non-hematopoietic cells in the disruption of hematopoiesis under homeostatic conditions.

8.
Sci Adv ; 9(3): eadd2913, 2023 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-36652512

RESUMEN

The murine embryonic-trophoblast-extra-embryonic endoderm (ETX) model is an integrated stem cell-based model to study early postimplantation development. It is based on the self-assembly potential of embryonic, trophoblast, and hypoblast/primitive/visceral endoderm-type stem cell lines (ESC, TSC, and XEN, respectively) to arrange into postimplantation egg cylinder-like embryoids. Here, we provide an optimized method for reliable and efficient generation of ETX embryoids that develop into late gastrulation in static culture conditions. It is based on transgenic Gata6-overproducing ESCs and modified assembly and culture conditions. Using this method, up to 43% of assembled ETX embryoids exhibited a correct spatial distribution of the three stem cell derivatives at day 4 of culture. Of those, 40% progressed into ETX embryoids that both transcriptionally and morphologically faithfully mimicked in vivo postimplantation mouse development between E5.5 and E7.5. The ETX model system offers the opportunity to study the murine postimplantation egg cylinder stages and could serve as a source of various cell lineage precursors.

9.
Br J Haematol ; 200(1): 79-86, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36168923

RESUMEN

Severe congenital neutropenia (SCN) patients are prone to develop myelodysplastic syndrome (MDS) or acute myeloid leukaemia (AML). Leukaemic progression of SCN is associated with the early acquisition of CSF3R mutations in haematopoietic progenitor cells (HPCs), which truncate the colony-stimulating factor 3 receptor (CSF3R). These mutant clones may arise years before MDS/AML becomes overt. Introduction and activation of CSF3R truncation mutants in normal HPCs causes a clonally dominant myeloproliferative state in mice treated with CSF3. Paradoxically, in SCN patients receiving CSF3 therapy, clonal dominance of CSF3R mutant clones usually occurs only after the acquisition of additional mutations shortly before frank MDS or AML is diagnosed. To seek an explanation for this discrepancy, we introduced a patient-derived CSF3R-truncating mutation in ELANE-SCN and HAX1-SCN derived and control induced pluripotent stem cells and compared the CSF3 responses of HPCs generated from these lines. In contrast to CSF3R-mutant control HPCs, CSF3R-mutant HPCs from SCN patients do not show increased proliferation but display elevated levels of inflammatory signalling. Thus, activation of the truncated CSF3R in SCN-HPCs does not evoke clonal outgrowth but causes a sustained pro-inflammatory state, which has ramifications for how these CSF3R mutants contribute to the leukaemic transformation of SCN.


Asunto(s)
Leucemia Mieloide Aguda , Síndromes Mielodisplásicos , Ratones , Animales , Síndromes Congénitos de Insuficiencia de la Médula Ósea/genética , Leucemia Mieloide Aguda/diagnóstico , Mutación , Síndromes Mielodisplásicos/genética , Síndromes Mielodisplásicos/complicaciones
10.
Nature ; 608(7924): 766-777, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35948637

RESUMEN

Myocardial infarction is a leading cause of death worldwide1. Although advances have been made in acute treatment, an incomplete understanding of remodelling processes has limited the effectiveness of therapies to reduce late-stage mortality2. Here we generate an integrative high-resolution map of human cardiac remodelling after myocardial infarction using single-cell gene expression, chromatin accessibility and spatial transcriptomic profiling of multiple physiological zones at distinct time points in myocardium from patients with myocardial infarction and controls. Multi-modal data integration enabled us to evaluate cardiac cell-type compositions at increased resolution, yielding insights into changes of the cardiac transcriptome and epigenome through the identification of distinct tissue structures of injury, repair and remodelling. We identified and validated disease-specific cardiac cell states of major cell types and analysed them in their spatial context, evaluating their dependency on other cell types. Our data elucidate the molecular principles of human myocardial tissue organization, recapitulating a gradual cardiomyocyte and myeloid continuum following ischaemic injury. In sum, our study provides an integrative molecular map of human myocardial infarction, represents an essential reference for the field and paves the way for advanced mechanistic and therapeutic studies of cardiac disease.


Asunto(s)
Remodelación Atrial , Ensamble y Desensamble de Cromatina , Perfilación de la Expresión Génica , Infarto del Miocardio , Análisis de la Célula Individual , Remodelación Ventricular , Remodelación Atrial/genética , Estudios de Casos y Controles , Cromatina/genética , Epigenoma , Humanos , Infarto del Miocardio/genética , Infarto del Miocardio/patología , Miocardio/metabolismo , Miocardio/patología , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/patología , Factores de Tiempo , Remodelación Ventricular/genética
11.
Acta Biomater ; 151: 346-359, 2022 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-35995408

RESUMEN

A functional vascular system is a prerequisite for bone repair as disturbed angiogenesis often causes non-union. Paracrine factors released from human bone marrow derived mesenchymal stromal cells (BMSCs) have angiogenic effects on endothelial cells. However, whether these paracrine factors participate in blood flow dynamics within bone capillaries remains poorly understood. Here, we used two different microfluidic designs to investigate critical steps during angiogenesis and found pronounced effects of endothelial cell proliferation as well as chemotactic and mechanotactic migration induced by BMSC conditioned medium (CM). The application of BMSC-CM in dynamic cultures demonstrates that bioactive factors in combination with fluidic flow-induced biomechanical signals significantly enhanced endothelial cell migration. Transcriptional analyses of endothelial cells demonstrate the induction of a unique gene expression profile related to tricarboxylic acid cycle and energy metabolism by the combination of BMSC-CM factors and shear stress, which opens an interesting avenue to explore during fracture healing. Our results stress the importance of in vivo - like microenvironments simultaneously including biochemical, biomechanical and oxygen levels when investigating key events during vessel repair. STATEMENT OF SIGNIFICANCE: Our results demonstrate the importance of recapitulating in vivo - like microenvironments when investigating key events during vessel repair. Endothelial cells exhibit enhanced angiogenesis characteristics when simultaneous exposing them to hMSC-CM, mechanical forces and biochemical signals simultaneously. The improved angiogenesis may not only result from the direct effect of growth factors, but also by reprogramming of endothelial cell metabolism. Moreover, with this model we demonstrated a synergistic impact of mechanical forces and biochemical factors on endothelial cell behavior and the expression of genes involved in the TCA cycle and energy metabolism, which opens an interesting new avenue to stimulate angiogenesis during fracture healing.


Asunto(s)
Células Endoteliales , Células Madre Mesenquimatosas , Medios de Cultivo Condicionados/metabolismo , Medios de Cultivo Condicionados/farmacología , Humanos , Microfluídica , Neovascularización Fisiológica , Oxígeno/farmacología
12.
Nat Commun ; 13(1): 3027, 2022 05 31.
Artículo en Inglés | MEDLINE | ID: mdl-35641541

RESUMEN

The cardiac vascular and perivascular niche are of major importance in homeostasis and during disease, but we lack a complete understanding of its cellular heterogeneity and alteration in response to injury as a major driver of heart failure. Using combined genetic fate tracing with confocal imaging and single-cell RNA sequencing of this niche in homeostasis and during heart failure, we unravel cell type specific transcriptomic changes in fibroblast, endothelial, pericyte and vascular smooth muscle cell subtypes. We characterize a specific fibroblast subpopulation that exists during homeostasis, acquires Thbs4 expression and expands after injury driving cardiac fibrosis, and identify the transcription factor TEAD1 as a regulator of fibroblast activation. Endothelial cells display a proliferative response after injury, which is not sustained in later remodeling, together with transcriptional changes related to hypoxia, angiogenesis, and migration. Collectively, our data provides an extensive resource of transcriptomic changes in the vascular niche in hypertrophic cardiac remodeling.


Asunto(s)
Células Endoteliales , Insuficiencia Cardíaca , Células Endoteliales/metabolismo , Fibroblastos/metabolismo , Insuficiencia Cardíaca/genética , Insuficiencia Cardíaca/metabolismo , Humanos , Miocitos del Músculo Liso/metabolismo , Pericitos/metabolismo
13.
Stem Cells ; 40(6): 577-591, 2022 06 22.
Artículo en Inglés | MEDLINE | ID: mdl-35524742

RESUMEN

Induced pluripotent stem cell (iPSC)-derived kidney organoids are a potential tool for the regeneration of kidney tissue. They represent an early stage of nephrogenesis and have been shown to successfsully vascularize and mature further in vivo. However, there are concerns regarding the long-term safety and stability of iPSC derivatives. Specifically, the potential for tumorigenesis may impede the road to clinical application. To study safety and stability of kidney organoids, we analyzed their potential for malignant transformation in a teratoma assay and following long-term subcutaneous implantation in an immune-deficient mouse model. We did not detect fully functional residual iPSCs in the kidney organoids as analyzed by gene expression analysis, single-cell sequencing and immunohistochemistry. Accordingly, kidney organoids failed to form teratoma. Upon long-term subcutaneous implantation of whole organoids in immunodeficient IL2Ry-/-RAG2-/- mice, we observed tumor formation in 5 out of 103 implanted kidney organoids. These tumors were composed of WT1+CD56+ immature blastemal cells and showed histological resemblance with Wilms tumor. No genetic changes were identified that contributed to the occurrence of tumorigenic cells within the kidney organoids. However, assessment of epigenetic changes revealed a unique cluster of differentially methylated genes that were also present in undifferentiated iPSCs. We discovered that kidney organoids have the capacity to form tumors upon long-term implantation. The presence of epigenetic modifications combined with the lack of environmental cues may have caused an arrest in terminal differentiation. Our results indicate that the safe implementation of kidney organoids should exclude the presence of pro-tumorigenic methylation in kidney organoids.


Asunto(s)
Células Madre Pluripotentes Inducidas , Teratoma , Animales , Diferenciación Celular , Células Madre Pluripotentes Inducidas/metabolismo , Riñón/patología , Ratones , Organogénesis , Organoides/metabolismo , Teratoma/patología
14.
Exp Hematol ; 110: 28-33, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35341805

RESUMEN

Within the heterogenous pool of bone marrow stromal cells, mesenchymal stromal cells (MSCs) are of particular interest because of their hematopoiesis-supporting capacities, contribution to disease progression, therapy resistance, and leukemic initiation. Cultured bone marrow-derived stromal cells (cBMSCs) are used for in vitro modeling of hematopoiesis-stroma interactions, validation of disease mechanisms, and screening for therapeutic targets. Here, we place cBMSCs (mouse and human) in a bone marrow tissue context by systematically comparing the transcriptome of plastic-adherent cells on a single-cell level with in vivo counterparts. Cultured BMSCs encompass a rather homogenous cell population, independent of the isolation method used and, although still possessing hematopoiesis-supporting capacity, are distinct from freshly isolated MSCs and more akin to in vivo fibroblast populations. Informed by combined cell trajectories and pathway analyses, we illustrate that TGFb inhibition in vitro can preserve a more "MSC"-like phenotype.


Asunto(s)
Células de la Médula Ósea , Células Madre Mesenquimatosas , Animales , Células de la Médula Ósea/metabolismo , Diferenciación Celular/genética , Células Cultivadas , Fibroblastos , Hematopoyesis/fisiología , Células Madre Mesenquimatosas/metabolismo , Ratones , Análisis de la Célula Individual
15.
Blood Adv ; 6(6): 1780-1796, 2022 03 22.
Artículo en Inglés | MEDLINE | ID: mdl-35016204

RESUMEN

How genetic haploinsufficiency contributes to the clonal dominance of hematopoietic stem cells (HSCs) in del(5q) myelodysplastic syndrome (MDS) remains unresolved. Using a genetic barcoding strategy, we performed a systematic comparison on genes implicated in the pathogenesis of del(5q) MDS in direct competition with each other and wild-type (WT) cells with single-clone resolution. Csnk1a1 haploinsufficient HSCs expanded (oligo)clonally and outcompeted all other tested genes and combinations. Csnk1a1-/+ multipotent progenitors showed a proproliferative gene signature and HSCs showed a downregulation of inflammatory signaling/immune response. In validation experiments, Csnk1a1-/+ HSCs outperformed their WT counterparts under a chronic inflammation stimulus, also known to be caused by neighboring genes on chromosome 5. We therefore propose a crucial role for Csnk1a1 haploinsufficiency in the selective advantage of 5q-HSCs, implemented by creation of a unique competitive advantage through increased HSC self-renewal and proliferation capacity, as well as increased fitness under inflammatory stress.


Asunto(s)
Deleción Cromosómica , Síndromes Mielodisplásicos , Haploinsuficiencia , Células Madre Hematopoyéticas/patología , Humanos , Síndromes Mielodisplásicos/patología
16.
Cell Stem Cell ; 29(2): 217-231.e8, 2022 02 03.
Artículo en Inglés | MEDLINE | ID: mdl-35032430

RESUMEN

Kidney failure is frequently observed during and after COVID-19, but it remains elusive whether this is a direct effect of the virus. Here, we report that SARS-CoV-2 directly infects kidney cells and is associated with increased tubule-interstitial kidney fibrosis in patient autopsy samples. To study direct effects of the virus on the kidney independent of systemic effects of COVID-19, we infected human-induced pluripotent stem-cell-derived kidney organoids with SARS-CoV-2. Single-cell RNA sequencing indicated injury and dedifferentiation of infected cells with activation of profibrotic signaling pathways. Importantly, SARS-CoV-2 infection also led to increased collagen 1 protein expression in organoids. A SARS-CoV-2 protease inhibitor was able to ameliorate the infection of kidney cells by SARS-CoV-2. Our results suggest that SARS-CoV-2 can directly infect kidney cells and induce cell injury with subsequent fibrosis. These data could explain both acute kidney injury in COVID-19 patients and the development of chronic kidney disease in long COVID.


Asunto(s)
COVID-19 , SARS-CoV-2 , COVID-19/complicaciones , Fibrosis , Humanos , Riñón , Organoides/patología , Síndrome Post Agudo de COVID-19
17.
Haematologica ; 107(1): 143-153, 2022 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-33596640

RESUMEN

T-cell prolymphocytic leukemia (T-PLL) is mostly characterized by aberrant expansion of small- to medium-sized prolymphocytes with a mature post-thymic phenotype, high aggressiveness of the disease and poor prognosis. However, T-PLL is more heterogeneous with a wide range of clinical, morphological, and molecular features, which occasionally impedes the diagnosis. We hypothesized that T-PLL consists of phenotypic and/or genotypic subgroups that may explain the heterogeneity of the disease. Multi-dimensional immuno-phenotyping and gene expression profiling did not reveal clear T-PLL subgroups, and no clear T-cell receptor a or ß CDR3 skewing was observed between different T-PLL cases. We revealed that the expression of microRNA (miRNA) is aberrant and often heterogeneous in T-PLL. We identified 35 miRNA that were aberrantly expressed in T-PLL with miR-200c/141 as the most differentially expressed cluster. High miR- 200c/141 and miR-181a/181b expression was significantly correlated with increased white blood cell counts and poor survival. Furthermore, we found that overexpression of miR-200c/141 correlated with downregulation of their targets ZEB2 and TGFßR3 and aberrant TGFß1- induced phosphorylated SMAD2 (p-SMAD2) and p-SMAD3, indicating that the TGFß pathway is affected in T-PLL. Our results thus highlight the potential role for aberrantly expressed oncogenic miRNA in T-PLL and pave the way for new therapeutic targets in this disease.


Asunto(s)
Leucemia Prolinfocítica de Células T , MicroARNs , Perfilación de la Expresión Génica , Humanos , Leucemia Prolinfocítica de Células T/diagnóstico , Leucemia Prolinfocítica de Células T/genética , Leucemia Prolinfocítica de Células T/terapia , Linfocitos , MicroARNs/genética , Factor de Crecimiento Transformador beta , Caja Homeótica 2 de Unión a E-Box con Dedos de Zinc/genética
18.
Leukemia ; 36(3): 687-700, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34741119

RESUMEN

MIR139 is a tumor suppressor and is commonly silenced in acute myeloid leukemia (AML). However, the tumor-suppressing activities of miR-139 and molecular mechanisms of MIR139-silencing remain largely unknown. Here, we studied the poorly prognostic MLL-AF9 fusion protein-expressing AML. We show that MLL-AF9 expression in hematopoietic precursors caused epigenetic silencing of MIR139, whereas overexpression of MIR139 inhibited in vitro and in vivo AML outgrowth. We identified novel miR-139 targets that mediate the tumor-suppressing activities of miR-139 in MLL-AF9 AML. We revealed that two enhancer regions control MIR139 expression and found that the polycomb repressive complex 2 (PRC2) downstream of MLL-AF9 epigenetically silenced MIR139 in AML. Finally, a genome-wide CRISPR-Cas9 knockout screen revealed RNA Polymerase 2 Subunit M (POLR2M) as a novel MIR139-regulatory factor. Our findings elucidate the molecular control of tumor suppressor MIR139 and reveal a role for POLR2M in the MIR139-silencing mechanism, downstream of MLL-AF9 and PRC2 in AML. In addition, we confirmed these findings in human AML cell lines with different oncogenic aberrations, suggesting that this is a more common oncogenic mechanism in AML. Our results may pave the way for new targeted therapy in AML.


Asunto(s)
Leucemia Mieloide Aguda/genética , MicroARNs/genética , ARN Polimerasa II/genética , Animales , Carcinogénesis/genética , Línea Celular Tumoral , Epigénesis Genética , Regulación Leucémica de la Expresión Génica , Humanos , Ratones Endogámicos C57BL , Ratones Noqueados , Proteína de la Leucemia Mieloide-Linfoide/genética , Proteínas de Fusión Oncogénica/genética
19.
Mol Oncol ; 16(16): 2981-3000, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-34964258

RESUMEN

Intrapatient tumour heterogeneity is likely a major determinant of clinical outcome in cancer patients. To assess heterogeneity in a minimally invasive manner, methods to perform single circulating tumour cell (CTC) genomics at high resolution are necessary. However, due to the rarity of CTCs, development of such methods is challenging. Here, we developed a modular single CTC analysis pipeline to assess intrapatient heterogeneity by copy number (CN) profiling. To optimize this pipeline, spike-in experiments using MCF-7 breast cancer cells were performed. The VyCAP puncher system was used to isolate single cells. The quality of whole genome amplification (WGA) products generated by REPLI-g and Ampli1™ methods, as well as the results from the Illumina Truseq and the Ampli1™ LowPass library preparation techniques, was compared. Moreover, a bioinformatic pipeline was designed to generate CN profiles from single CTCs. The optimal combination of Ampli1™ WGA and Illumina Truseq library preparation was successfully validated on patient-derived CTCs. In conclusion, we developed a novel modular pipeline to isolate single CTCs and subsequently generate detailed patient-derived CN profiles that allow assessment of intrapatient heterogeneity in future studies.


Asunto(s)
Células Neoplásicas Circulantes , Biomarcadores de Tumor , Recuento de Células , Variaciones en el Número de Copia de ADN/genética , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Humanos , Células Neoplásicas Circulantes/patología , Análisis de la Célula Individual/métodos
20.
Cancer Discov ; 11(11): 2868-2883, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-33980539

RESUMEN

In acute myeloid leukemia (AML) with inv(3)(q21;q26) or t(3;3)(q21;q26), a translocated GATA2 enhancer drives oncogenic expression of EVI1. We generated an EVI1-GFP AML model and applied an unbiased CRISPR/Cas9 enhancer scan to uncover sequence motifs essential for EVI1 transcription. Using this approach, we pinpointed a single regulatory element in the translocated GATA2 enhancer that is critically required for aberrant EVI1 expression. This element contained a DNA-binding motif for the transcription factor MYB, which specifically occupied this site at the translocated allele and was dispensable for GATA2 expression. MYB knockout as well as peptidomimetic blockade of CBP/p300-dependent MYB functions resulted in downregulation of EVI1 but not of GATA2. Targeting MYB or mutating its DNA-binding motif within the GATA2 enhancer resulted in myeloid differentiation and cell death, suggesting that interference with MYB-driven EVI1 transcription provides a potential entry point for therapy of inv(3)/t(3;3) AMLs. SIGNIFICANCE: We show a novel paradigm in which chromosomal aberrations reveal critical regulatory elements that are nonfunctional at their endogenous locus. This knowledge provides a rationale to develop new compounds to selectively interfere with oncogenic enhancer activity.This article is highlighted in the In This Issue feature, p. 2659.


Asunto(s)
Elementos de Facilitación Genéticos , Genes myb , Leucemia Mieloide Aguda , Translocación Genética , Factor de Transcripción GATA2 , Humanos , Leucemia Mieloide Aguda/genética , Proteína del Locus del Complejo MDS1 y EV11 , Oncogenes
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA