Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 108
Filtrar
1.
Plants (Basel) ; 13(17)2024 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-39273985

RESUMEN

Mechanisms underlying grapevine responses to water(-deficient) stress (WS) are crucial for viticulture amid escalating climate change challenges. Reanalysis of previous transcriptome data uncovered disparities among isohydric and anisohydric grapevine cultivars in managing water scarcity. By using a self-organizing map (SOM) transcriptome portrayal, we elucidate specific gene expression trajectories, shedding light on the dynamic interplay of transcriptional programs as stress duration progresses. Functional annotation reveals key pathways involved in drought response, pinpointing potential targets for enhancing drought resilience in grapevine cultivation. Our results indicate distinct gene expression responses, with the isohydric cultivar favoring plant growth and possibly stilbenoid synthesis, while the anisohydric cultivar engages more in stress response and water management mechanisms. Notably, prolonged WS leads to converging stress responses in both cultivars, particularly through the activation of chaperones for stress mitigation. These findings underscore the importance of understanding cultivar-specific WS responses to develop sustainable viticultural strategies in the face of changing climate.

2.
J Biol Chem ; 300(7): 107442, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38838779

RESUMEN

Sebaceous glands (SG) and their oily secretion (sebum) are indispensable for maintaining skin structure and function, and their deregulation causes skin disorders including but not limited to acne. Recent studies also indicate that sebum may have important immunomodulatory activities and may influence whole-body energy metabolism. However, the progressive transcriptional changes of sebocytes that lead to sebum production have never been characterized in detail. Here, we exploited the high cellular resolution provided by sebaceous hyperplasia and integrated spatial transcriptomics, pseudo time analysis, RNA velocity, and functional enrichment to map the landscape of sebaceous differentiation. Our results were validated by comparison with published SG transcriptome data and further corroborated by assessing the protein expression pattern of a subset of the transcripts in the public repository Human Protein Atlas. Departing from four sebocyte differentiation stages generated by unsupervised clustering, we demonstrate consecutive modulation of cellular functions associable with specific gene sets, from cell proliferation and oxidative phosphorylation via lipid synthesis to cell death. Both validation methods confirmed the biological significance of our results. Our report is complemented by a freely available and browsable online tool. Our data provide the first high-resolution spatial portrait of the SG transcriptional landscape and deliver starting points for experimentally assessing novel candidate molecules for regulating SG homeostasis in health and disease.


Asunto(s)
Diferenciación Celular , Glándulas Sebáceas , Humanos , Glándulas Sebáceas/metabolismo , Glándulas Sebáceas/citología , Transcriptoma , Sebo/metabolismo , Transcripción Genética
3.
J Biol Chem ; 300(6): 107392, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38763334

RESUMEN

Telomeres, protective caps at chromosome ends, maintain genomic stability and control cell lifespan. Dysregulated telomere maintenance mechanisms (TMMs) are cancer hallmarks, enabling unchecked cell proliferation. We conducted a pan-cancer evaluation of TMM using RNA sequencing data from The Cancer Genome Atlas for 33 different cancer types and analyzed the activities of telomerase-dependent (TEL) and alternative lengthening of telomeres (ALT) TMM pathways in detail. To further characterize the TMM profiles, we categorized the tumors based on their ALT and TEL TMM pathway activities into five major phenotypes: ALT high TEL low, ALT low TEL low, ALT middle TEL middle, ALT high TEL high, and ALT low TEL high. These phenotypes refer to variations in telomere maintenance strategies, shedding light on the heterogeneous nature of telomere regulation in cancer. Moreover, we investigated the clinical implications of TMM phenotypes by examining their associations with clinical characteristics and patient outcomes. Specific TMM profiles were linked to specific survival patterns, emphasizing the potential of TMM profiling as a prognostic indicator and aiding in personalized cancer treatment strategies. Gene ontology analysis of the TMM phenotypes unveiled enriched biological processes associated with cell cycle regulation (both TEL and ALT), DNA replication (TEL), and chromosome dynamics (ALT) showing that telomere maintenance is tightly intertwined with cellular processes governing proliferation and genomic stability. Overall, our study provides an overview of the complexity of transcriptional regulation of telomere maintenance mechanisms in cancer.


Asunto(s)
Neoplasias , Telomerasa , Homeostasis del Telómero , Telómero , Humanos , Neoplasias/genética , Neoplasias/metabolismo , Neoplasias/patología , Telómero/metabolismo , Telómero/genética , Telomerasa/genética , Telomerasa/metabolismo , Regulación Neoplásica de la Expresión Génica , Inestabilidad Genómica
4.
Curr Issues Mol Biol ; 46(5): 4701-4720, 2024 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-38785552

RESUMEN

A crucial feature of life is its spatial organization and compartmentalization on the molecular, cellular, and tissue levels. Spatial transcriptomics (ST) technology has opened a new chapter of the sequencing revolution, emerging rapidly with transformative effects across biology. This technique produces extensive and complex sequencing data, raising the need for computational methods for their comprehensive analysis and interpretation. We developed the ST browser web tool for the interactive discovery of ST images, focusing on different functional aspects such as single gene expression, the expression of functional gene sets, as well as the inspection of the spatial patterns of cell-cell interactions. As a unique feature, our tool applies self-organizing map (SOM) machine learning to the ST data. Our SOM data portrayal method generates individual gene expression landscapes for each spot in the ST image, enabling its downstream analysis with high resolution. The performance of the spatial browser is demonstrated by disentangling the intra-tumoral heterogeneity of melanoma and the microarchitecture of the mouse brain. The integration of machine-learning-based SOM portrayal into an interactive ST analysis environment opens novel perspectives for the comprehensive knowledge mining of the organization and interactions of cellular ecosystems.

5.
Schizophrenia (Heidelb) ; 10(1): 19, 2024 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-38368435

RESUMEN

The molecular events underlying the development, manifestation, and course of schizophrenia, bipolar disorder, and major depressive disorder span from embryonic life to advanced age. However, little is known about the early dynamics of gene expression in these disorders due to their relatively late manifestation. To address this, we conducted a secondary analysis of post-mortem prefrontal cortex datasets using bioinformatics and machine learning techniques to identify differentially expressed gene modules associated with aging and the diseases, determine their time-perturbation points, and assess enrichment with expression quantitative trait loci (eQTL) genes. Our findings revealed early, mid, and late deregulation of expression of functional gene modules involved in neurodevelopment, plasticity, homeostasis, and immune response. This supports the hypothesis that multiple hits throughout life contribute to disease manifestation rather than a single early-life event. Moreover, the time-perturbed functional gene modules were associated with genetic loci affecting gene expression, highlighting the role of genetic factors in gene expression dynamics and the development of disease phenotypes. Our findings emphasize the importance of investigating time-dependent perturbations in gene expression before the age of onset in elucidating the molecular mechanisms of psychiatric disorders.

6.
Front Plant Sci ; 14: 1303542, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38126012

RESUMEN

Introduction: The escalating challenge of climate change has underscored the critical need to understand cold defense mechanisms in cultivated grapevine Vitis vinifera. Temperature variations can affect the growth and overall health of vine. Methods: We used Self Organizing Maps machine learning method to analyze gene expression data from leaves of five Vitis vinifera cultivars each treated by four different temperature conditions. The algorithm generated sample-specific "portraits" of the normalized gene expression data, revealing distinct patterns related to the temperature conditions applied. Results: Our analysis unveiled a connection with vitamin B1 (thiamine) biosynthesis, suggesting a link between temperature regulation and thiamine metabolism, in agreement with thiamine related stress response established in Arabidopsis before. Furthermore, we found that epigenetic mechanisms play a crucial role in regulating the expression of stress-responsive genes at low temperatures in grapevines. Discussion: Application of Self Organizing Maps portrayal to vine transcriptomics identified modules of coregulated genes triggered under cold stress. Our machine learning approach provides a promising option for transcriptomics studies in plants.

7.
Front Genet ; 14: 1264656, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37680201

RESUMEN

Most high throughput genomic data analysis pipelines currently rely on over-representation or gene set enrichment analysis (ORA/GSEA) approaches for functional analysis. In contrast, topology-based pathway analysis methods, which offer a more biologically informed perspective by incorporating interaction and topology information, have remained underutilized and inaccessible due to various limiting factors. These methods heavily rely on the quality of pathway topologies and often utilize predefined topologies from databases without assessing their correctness. To address these issues and make topology-aware pathway analysis more accessible and flexible, we introduce the PSF (Pathway Signal Flow) toolkit R package. Our toolkit integrates pathway curation and topology-based analysis, providing interactive and command-line tools that facilitate pathway importation, correction, and modification from diverse sources. This enables users to perform topology-based pathway signal flow analysis in both interactive and command-line modes. To showcase the toolkit's usability, we curated 36 KEGG signaling pathways and conducted several use-case studies, comparing our method with ORA and the topology-based signaling pathway impact analysis (SPIA) method. The results demonstrate that the algorithm can effectively identify ORA enriched pathways while providing more detailed branch-level information. Moreover, in contrast to the SPIA method, it offers the advantage of being cut-off free and less susceptible to the variability caused by selection thresholds. By combining pathway curation and topology-based analysis, the PSF toolkit enhances the quality, flexibility, and accessibility of topology-aware pathway analysis. Researchers can now easily import pathways from various sources, correct and modify them as needed, and perform detailed topology-based pathway signal flow analysis. In summary, our PSF toolkit offers an integrated solution that addresses the limitations of current topology-based pathway analysis methods. By providing interactive and command-line tools for pathway curation and topology-based analysis, we empower researchers to conduct comprehensive pathway analyses across a wide range of applications.

8.
Cancers (Basel) ; 15(15)2023 07 28.
Artículo en Inglés | MEDLINE | ID: mdl-37568651

RESUMEN

The molecular mechanisms of the liver metastasis of colorectal cancer (CRLM) remain poorly understood. Here, we applied machine learning and bioinformatics trajectory inference to analyze a gene expression dataset of CRLM. We studied the co-regulation patterns at the gene level, the potential paths of tumor development, their functional context, and their prognostic relevance. Our analysis confirmed the subtyping of five liver metastasis subtypes (LMS). We provide gene-marker signatures for each LMS, and a comprehensive functional characterization that considers both the hallmarks of cancer and the tumor microenvironment. The ordering of CRLMs along a pseudotime-tree revealed a continuous shift in expression programs, suggesting a developmental relationship between the subtypes. Notably, trajectory inference and personalized analysis discovered a range of epigenetic states that shape and guide metastasis progression. By constructing prognostic maps that divided the expression landscape into regions associated with favorable and unfavorable prognoses, we derived a prognostic expression score. This was associated with critical processes such as epithelial-mesenchymal transition, treatment resistance, and immune evasion. These factors were associated with responses to neoadjuvant treatment and the formation of an immuno-suppressive, mesenchymal state. Our machine learning-based molecular profiling provides an in-depth characterization of CRLM heterogeneity with possible implications for treatment and personalized diagnostics.

9.
Eur J Immunol ; 53(11): e2250354, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37540729

RESUMEN

RATIONALE: Psoriasis is a chronic inflammatory skin disease involving different cytokines and chemokines. OBJECTIVES: Here we use single-cell transcriptomic analyses to identify relevant immune cell and nonimmune cell populations for an in-depth characterization of cell types and inflammatory mediators in this disease. METHODS: Psoriasis skin lesions of eight patients are analyzed using single-cell technology. Data are further validated by in situ hybridization (ISH) of human tissues, serum analyses of human samples and tissues of a murine model of psoriasis, and by in vitro cell culture experiments. RESULTS: Several different immune-activated cell types with particular cytokine patterns are identified such as keratinocytes, T-helper cells, dendritic cells, macrophages, and fibroblasts. Apart from well-known factors, IL-14 (TXLNA), IL-18, and IL-32 are identified with prominent expression in individual cell types in psoriasis. The percentage of inflammatory cellular subtypes expressing IL-14, IL-18, and IL-32 was significantly higher in psoriatic skin compared with healthy control skin. These findings were confirmed by ISH of human skin samples, in a murine model of psoriasis, in human serum samples, and in in vitro experiments. CONCLUSIONS: Taken together, we provide a differentiated view of psoriasis immune-cell phenotypes that support the role of IL-14, IL-18, and IL-32 in psoriasis pathogenesis.


Asunto(s)
Interleucina-18 , Psoriasis , Humanos , Ratones , Animales , Interleucina-18/genética , Interleucina-18/metabolismo , Modelos Animales de Enfermedad , Transcriptoma , Psoriasis/genética , Piel/patología , Queratinocitos , Citocinas/metabolismo , Proteínas de Transporte Vesicular/genética , Proteínas de Transporte Vesicular/metabolismo
10.
11.
J Invest Dermatol ; 143(11): 2132-2144.e15, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37236597

RESUMEN

Skin injury and several diseases elicit fibrosis and induce hair follicle (HF) growth arrest and loss. The resulting alopecia and disfiguration represent a severe burden for patients, both physically and psychologically. Reduction of profibrotic factors such as dipeptidyl peptidase 4 (DPP4) might be a strategy to tackle this issue. We show DPP4 overrepresentation in settings with HF growth arrest (telogen), HF loss, and nonregenerative wound areas in mouse skin and human scalp. Topical DPP4 inhibition with Food and Drug Administration/European Medicines Agency-approved sitagliptin on preclinical models of murine HF activation/regeneration results in accelerated anagen progress, whereas treatment of wounds with sitagliptin results in reduced expression of fibrosis markers, increased induction of anagen around wounds, and HF regeneration in the wound center. These effects are associated with higher expression of Wnt target Lef1, known to be required for HF anagen/HF-activation and regeneration. Sitagliptin treatment decreases profibrotic signaling in the skin, induces a differentiation trajectory of HF cells, and activates Wnt targets related to HF activation/growth but not those supporting fibrosis. Taken together, our study shows a role for DPP4 in HF biology and shows how DPP4 inhibition, currently used as oral medication to treat diabetes, could be repurposed into a topical treatment agent to potentially reverse HF loss in alopecia and after injury.

13.
Front Immunol ; 13: 994885, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36248848

RESUMEN

Anti-CD19 CAR-T cell immunotherapy is a hopeful treatment option for patients with B cell lymphomas, however it copes with partly severe adverse effects like neurotoxicity. Single-cell resolved molecular data sets in combination with clinical parametrization allow for comprehensive characterization of cellular subpopulations, their transcriptomic states, and their relation to the adverse effects. We here present a re-analysis of single-cell RNA sequencing data of 24 patients comprising more than 130,000 cells with focus on cellular states and their association to immune cell related neurotoxicity. For this, we developed a single-cell data portraying workflow to disentangle the transcriptional state space with single-cell resolution and its analysis in terms of modularly-composed cellular programs. We demonstrated capabilities of single-cell data portraying to disentangle transcriptional states using intuitive visualization, functional mining, molecular cell stratification, and variability analyses. Our analysis revealed that the T cell composition of the patient's infusion product as well as the spectrum of their transcriptional states of cells derived from patients with low ICANS grade do not markedly differ from those of cells from high ICANS patients, while the relative abundancies, particularly that of cycling cells, of LAG3-mediated exhaustion and of CAR positive cells, vary. Our study provides molecular details of the transcriptomic landscape with possible impact to overcome neurotoxicity.


Asunto(s)
Síndromes de Neurotoxicidad , Receptores Quiméricos de Antígenos , Antígenos CD19 , Humanos , Inmunoterapia Adoptiva/efectos adversos , Síndromes de Neurotoxicidad/genética , Receptores Quiméricos de Antígenos/genética , Linfocitos T
14.
Methods Inf Med ; 61(S 02): e103-e115, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-35915977

RESUMEN

BACKGROUND: Clinical trials, epidemiological studies, clinical registries, and other prospective research projects, together with patient care services, are main sources of data in the medical research domain. They serve often as a basis for secondary research in evidence-based medicine, prediction models for disease, and its progression. This data are often neither sufficiently described nor accessible. Related models are often not accessible as a functional program tool for interested users from the health care and biomedical domains. OBJECTIVE: The interdisciplinary project Leipzig Health Atlas (LHA) was developed to close this gap. LHA is an online platform that serves as a sustainable archive providing medical data, metadata, models, and novel phenotypes from clinical trials, epidemiological studies, and other medical research projects. METHODS: Data, models, and phenotypes are described by semantically rich metadata. The platform prefers to share data and models presented in original publications but is also open for nonpublished data. LHA provides and associates unique permanent identifiers for each dataset and model. Hence, the platform can be used to share prepared, quality-assured datasets and models while they are referenced in publications. All managed data, models, and phenotypes in LHA follow the FAIR principles, with public availability or restricted access for specific user groups. RESULTS: The LHA platform is in productive mode (https://www.health-atlas.de/). It is already used by a variety of clinical trial and research groups and is becoming increasingly popular also in the biomedical community. LHA is an integral part of the forthcoming initiative building a national research data infrastructure for health in Germany.


Asunto(s)
Estudios Prospectivos , Alemania
15.
Cancers (Basel) ; 14(14)2022 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-35884496

RESUMEN

Classification of lymphoid neoplasms is based mainly on histologic, immunologic, and (rarer) genetic features. It has been supplemented by gene expression profiling (GEP) in the last decade. Despite the considerable success, particularly in associating lymphoma subtypes with specific transcriptional programs and classifier signatures of up- or downregulated genes, competing molecular classifiers were often proposed in the literature by different groups for the same classification tasks to distinguish, e.g., BL versus DLBCL or different DLBCL subtypes. Moreover, rarer sub-entities such as MYC and BCL2 "double hit lymphomas" (DHL), IRF4-rearranged large cell lymphoma (IRF4-LCL), and Burkitt-like lymphomas with 11q aberration pattern (mnBLL-11q) attracted interest while their relatedness regarding the major classes is still unclear in many respects. We explored the transcriptional landscape of 873 lymphomas referring to a wide spectrum of subtypes by applying self-organizing maps (SOM) machine learning. The landscape reveals a continuum of transcriptional states activated in the different subtypes without clear-cut borderlines between them and preventing their unambiguous classification. These states show striking parallels with single cell gene expression of the active germinal center (GC), which is characterized by the cyclic progression of B-cells. The expression patterns along the GC trajectory are discriminative for distinguishing different lymphoma subtypes. We show that the rare subtypes take intermediate positions between BL, DLBCL, and FL as considered by the 5th edition of the WHO classification of haemato-lymphoid tumors in 2022. Classifier gene signatures extracted from these states as modules of coregulated genes are competitive with literature classifiers. They provide functional-defined classifiers with the option of consenting redundant classifiers from the literature. We discuss alternative classification schemes of different granularity and functional impact as possible avenues toward personalization and improved diagnostics of GC-derived lymphomas.

16.
Cancers (Basel) ; 14(11)2022 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-35681780

RESUMEN

Multi-omics high-throughput technologies produce data sets which are not restricted to only one but consist of multiple omics modalities, often as patient-matched tumour specimens. The integrative analysis of these omics modalities is essential to obtain a holistic view on the otherwise fragmented information hidden in this data. We present an intuitive method enabling the combined analysis of multi-omics data based on self-organizing maps machine learning. It "portrays" the expression, methylation and copy number variations (CNV) landscapes of each tumour using the same gene-centred coordinate system. It enables the visual evaluation and direct comparison of the different omics layers on a personalized basis. We applied this combined molecular portrayal to lower grade gliomas, a heterogeneous brain tumour entity. It classifies into a series of molecular subtypes defined by genetic key lesions, which associate with large-scale effects on DNA methylation and gene expression, and in final consequence, drive with cell fate decisions towards oligodendroglioma-, astrocytoma- and glioblastoma-like cancer cell lineages with different prognoses. Consensus modes of concerted changes of expression, methylation and CNV are governed by the degree of co-regulation within and between the omics layers. The method is not restricted to the triple-omics data used here. The similarity landscapes reflect partly independent effects of genetic lesions and DNA methylation with consequences for cancer hallmark characteristics such as proliferation, inflammation and blocked differentiation in a subtype specific fashion. It can be extended to integrate other omics features such as genetic mutation, protein expression data as well as extracting prognostic markers.

17.
Cells ; 11(3)2022 01 21.
Artículo en Inglés | MEDLINE | ID: mdl-35159171

RESUMEN

Mutually linked expression and methylation dynamics in the brain govern genome regulation over the whole lifetime with an impact on cognition, psychological disorders, and cancer. We performed a joint study of gene expression and DNA methylation of brain tissue originating from the human prefrontal cortex of individuals across the lifespan to describe changes in cellular programs and their regulation by epigenetic mechanisms. The analysis considers previous knowledge in terms of functional gene signatures and chromatin states derived from independent studies, aging profiles of a battery of chromatin modifying enzymes, and data of gliomas and neuropsychological disorders for a holistic view on the development and aging of the brain. Expression and methylation changes from babies to elderly adults decompose into different modes associated with the serial activation of (brain) developmental, learning, metabolic and inflammatory functions, where methylation in gene promoters mostly represses transcription. Expression of genes encoding methylome modifying enzymes is very diverse reflecting complex regulations during lifetime which also associates with the marked remodeling of chromatin between permissive and restrictive states. Data of brain cancer and psychotic disorders reveal footprints of pathophysiologies related to brain development and aging. Comparison of aging brains with gliomas supports the view that glioblastoma-like and astrocytoma-like tumors exhibit higher cellular plasticity activated in the developing healthy brain while oligodendrogliomas have a more stable differentiation hierarchy more resembling the aged brain. The balance and specific shifts between volatile and stable and between more irreversible and more plastic epigenomic networks govern the development and aging of healthy and diseased brain.


Asunto(s)
Epigenoma , Glioma , Adulto , Anciano , Envejecimiento/genética , Envejecimiento/metabolismo , Encéfalo/metabolismo , Cromatina/metabolismo , Metilación de ADN/genética , Glioma/genética , Glioma/metabolismo , Humanos , Lactante , Transcriptoma/genética
18.
BMC Genomics ; 22(1): 715, 2021 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-34600492

RESUMEN

BACKGROUND: Sinoatrial Node (SAN) is part of the cardiac conduction system, which controls the rhythmic contraction of the vertebrate heart. The SAN consists of a specialized pacemaker cell population that has the potential to generate electrical impulses. Although the SAN pacemaker has been extensively studied in mammalian and teleost models, including the zebrafish, their molecular nature remains inadequately comprehended. RESULTS: To characterize the molecular profile of the zebrafish sinoatrial ring (SAR) and elucidate the mechanism of pacemaker function, we utilized the transgenic line sqet33mi59BEt to isolate cells of the SAR of developing zebrafish embryos and profiled their transcriptome. Our analyses identified novel candidate genes and well-known conserved signaling pathways involved in pacemaker development. We show that, compared to the rest of the heart, the zebrafish SAR overexpresses several mammalian SAN pacemaker signature genes, which include hcn4 as well as those encoding calcium- and potassium-gated channels. Moreover, genes encoding components of the BMP and Wnt signaling pathways, as well as members of the Tbx family, which have previously been implicated in pacemaker development, were also overexpressed in the SAR. Among SAR-overexpressed genes, 24 had human homologues implicated in 104 different ClinVar phenotype entries related to various forms of congenital heart diseases, which suggest the relevance of our transcriptomics resource to studying human heart conditions. Finally, functional analyses of three SAR-overexpressed genes, pard6a, prom2, and atp1a1a.2, uncovered their novel role in heart development and physiology. CONCLUSION: Our results established conserved aspects between zebrafish and mammalian pacemaker function and revealed novel factors implicated in maintaining cardiac rhythm. The transcriptome data generated in this study represents a unique and valuable resource for the study of pacemaker function and associated heart diseases.


Asunto(s)
Pez Cebra , Animales , Frecuencia Cardíaca , Humanos , Nodo Sinoatrial , Transcriptoma , Pez Cebra/genética
19.
Viruses ; 13(9)2021 09 03.
Artículo en Inglés | MEDLINE | ID: mdl-34578345

RESUMEN

Surveillance of the evolving SARS-CoV-2 genome combined with epidemiological monitoring and emerging vaccination became paramount tasks to control the pandemic which is rapidly changing in time and space. Genomic surveillance must combine generation and sharing sequence data with appropriate bioinformatics monitoring and analysis methods. We applied molecular portrayal using self-organizing maps machine learning (SOM portrayal) to characterize the diversity of the virus genomes, their mutual relatedness and development since the beginning of the pandemic. The genetic landscape obtained visualizes the relevant mutations in a lineage-specific fashion and provides developmental paths in genetic state space from early lineages towards the variants of concern alpha, beta, gamma and delta. The different genes of the virus have specific footprints in the landscape reflecting their biological impact. SOM portrayal provides a novel option for 'bioinformatics surveillance' of the pandemic, with strong odds regarding visualization, intuitive perception and 'personalization' of the mutational patterns of the virus genomes.


Asunto(s)
COVID-19/virología , Evolución Molecular , Variación Genética , Genoma Viral , SARS-CoV-2/genética , COVID-19/epidemiología , Biología Computacional , Genómica/métodos , Humanos , Incidencia , Mutación , Pandemias , Filogenia , Polimorfismo de Nucleótido Simple , SARS-CoV-2/clasificación
20.
Cancer Biol Med ; 2021 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-34591417

RESUMEN

OBJECTIVE: Cellular heterogeneity is regarded as a major factor affecting treatment response and resistance in malignant melanoma. Recent developments in single-cell sequencing technology have provided deeper insights into these mechanisms. METHODS: Here, we analyzed a BRAFV600E-mutant melanoma cell line by single-cell RNA-seq under various conditions: cells sensitive to BRAF inhibition with BRAF inhibitor vemurafenib and cells resistant to BRAF inhibition with vemurafenib alone or vemurafenib in combination with the MEK1/2 inhibitors cobimetinib or trametinib. Dimensionality reduction by t-distributed stochastic neighbor embedding and self-organizing maps identified distinct trajectories of resistance development clearly separating the 4 treatment conditions in cell and gene state space. RESULTS: Trajectories associated with resistance to single-agent treatment involved cell cycle, extracellular matrix, and de-differentiation programs. In contrast, shifts detected in double-resistant cells primarily affected translation and mitogen-activated protein kinase pathway reactivation, with a small subpopulation showing markers of pluripotency. These findings were validated in pseudotime analyses and RNA velocity measurements. CONCLUSIONS: The single-cell transcriptomic analyses reported here employed a spectrum of bioinformatics methods to identify mechanisms of melanoma resistance to single- and double-agent treatments. This study deepens our understanding of treatment-induced cellular reprogramming and plasticity in melanoma cells and identifies targets of potential relevance to the management of treatment resistance.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...