Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Am Med Inform Assoc ; 31(1): 154-164, 2023 12 22.
Artículo en Inglés | MEDLINE | ID: mdl-37759342

RESUMEN

OBJECTIVE: Identifying sets of rare diseases with shared aspects of etiology and pathophysiology may enable drug repurposing. Toward that aim, we utilized an integrative knowledge graph to construct clusters of rare diseases. MATERIALS AND METHODS: Data on 3242 rare diseases were extracted from the National Center for Advancing Translational Science Genetic and Rare Diseases Information center internal data resources. The rare disease data enriched with additional biomedical data, including gene and phenotype ontologies, biological pathway data, and small molecule-target activity data, to create a knowledge graph (KG). Node embeddings were trained and clustered. We validated the disease clusters through semantic similarity and feature enrichment analysis. RESULTS: Thirty-seven disease clusters were created with a mean size of 87 diseases. We validate the clusters quantitatively via semantic similarity based on the Orphanet Rare Disease Ontology. In addition, the clusters were analyzed for enrichment of associated genes, revealing that the enriched genes within clusters are highly related. DISCUSSION: We demonstrate that node embeddings are an effective method for clustering diseases within a heterogenous KG. Semantically similar diseases and relevant enriched genes have been uncovered within the clusters. Connections between disease clusters and drugs are enumerated for follow-up efforts. CONCLUSION: We lay out a method for clustering rare diseases using graph node embeddings. We develop an easy-to-maintain pipeline that can be updated when new data on rare diseases emerges. The embeddings themselves can be paired with other representation learning methods for other data types, such as drugs, to address other predictive modeling problems.


Asunto(s)
Reconocimiento de Normas Patrones Automatizadas , Enfermedades Raras , Humanos , Enfermedades Raras/genética , Semántica , Fenotipo , Reposicionamiento de Medicamentos
2.
Commun Med (Lond) ; 3(1): 98, 2023 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-37460679

RESUMEN

BACKGROUND: Birth defects are functional and structural abnormalities that impact about 1 in 33 births in the United States. They have been attributed to genetic and other factors such as drugs, cosmetics, food, and environmental pollutants during pregnancy, but for most birth defects there are no known causes. METHODS: To further characterize associations between small molecule compounds and their potential to induce specific birth abnormalities, we gathered knowledge from multiple sources to construct a reproductive toxicity Knowledge Graph (ReproTox-KG) with a focus on associations between birth defects, drugs, and genes. Specifically, we gathered data from drug/birth-defect associations from co-mentions in published abstracts, gene/birth-defect associations from genetic studies, drug- and preclinical-compound-induced gene expression changes in cell lines, known drug targets, genetic burden scores for human genes, and placental crossing scores for small molecules. RESULTS: Using ReproTox-KG and semi-supervised learning (SSL), we scored >30,000 preclinical small molecules for their potential to cross the placenta and induce birth defects, and identified >500 birth-defect/gene/drug cliques that can be used to explain molecular mechanisms for drug-induced birth defects. The ReproTox-KG can be accessed via a web-based user interface available at https://maayanlab.cloud/reprotox-kg . This site enables users to explore the associations between birth defects, approved and preclinical drugs, and all human genes. CONCLUSIONS: ReproTox-KG provides a resource for exploring knowledge about the molecular mechanisms of birth defects with the potential of predicting the likelihood of genes and preclinical small molecules to induce birth defects.


While birth defects are common, for most birth defects there are no known causes. During pregnancy, developing babies are exposed to drugs, cosmetics, food, and environmental pollutants that may cause birth defects. However, exactly how these environmental factors are involved in producing birth defects is difficult to discern. Also, birth defects can be a consequence of the genes inherited from the parents. We combined general data about human genes and drugs with specific data previously implicating genes and drugs in inducing birth defects to create a knowledge graph representation that connects genes, drugs, and birth defects. This knowledge graph can be used to explore new links that may explain why birth defects occur, particularly those that result from a combination of inherited and environmental influences.

3.
Cell Rep ; 41(9): 111717, 2022 11 29.
Artículo en Inglés | MEDLINE | ID: mdl-36450252

RESUMEN

Translating human genetic findings (genome-wide association studies [GWAS]) to pathobiology and therapeutic discovery remains a major challenge for Alzheimer's disease (AD). We present a network topology-based deep learning framework to identify disease-associated genes (NETTAG). We leverage non-coding GWAS loci effects on quantitative trait loci, enhancers and CpG islands, promoter regions, open chromatin, and promoter flanking regions under the protein-protein interactome. Via NETTAG, we identified 156 AD-risk genes enriched in druggable targets. Combining network-based prediction and retrospective case-control observations with 10 million individuals, we identified that usage of four drugs (ibuprofen, gemfibrozil, cholecalciferol, and ceftriaxone) is associated with reduced likelihood of AD incidence. Gemfibrozil (an approved lipid regulator) is significantly associated with 43% reduced risk of AD compared with simvastatin using an active-comparator design (95% confidence interval 0.51-0.63, p < 0.0001). In summary, NETTAG offers a deep learning methodology that utilizes GWAS and multi-genomic findings to identify pathobiology and drug repurposing in AD.


Asunto(s)
Enfermedad de Alzheimer , Aprendizaje Profundo , Humanos , Estudio de Asociación del Genoma Completo , Reposicionamiento de Medicamentos , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/genética , Gemfibrozilo , Estudios Retrospectivos
4.
Curr Opin Struct Biol ; 74: 102372, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35439658

RESUMEN

We investigate the use of confidence scores to evaluate the accuracy of a given AlphaFold (AF2) protein model for drug discovery. Prediction of accuracy is improved by not considering confidence scores below 80 due to the effects of disorder. On a set of recent crystal structures, 95% are likely to have accurate folds. Conformational discordance in the training set has a much more significant effect on accuracy than sequence divergence. We propose criteria for models and residues that are possibly useful for virtual screening. Based on these criteria, AF2 provides models for half of understudied (dark) human proteins and two-thirds of residues in those models.


Asunto(s)
Furilfuramida , Proteínas , Descubrimiento de Drogas , Humanos , Pliegue de Proteína , Proteínas/química
5.
Commun Biol ; 5(1): 125, 2022 02 11.
Artículo en Inglés | MEDLINE | ID: mdl-35149761

RESUMEN

With increased research funding for Alzheimer's disease (AD) and related disorders across the globe, large amounts of data are being generated. Several studies employed machine learning methods to understand the ever-growing omics data to enhance early diagnosis, map complex disease networks, or uncover potential drug targets. We describe results based on a Target Central Resource Database protein knowledge graph and evidence paths transformed into vectors by metapath matching. We extracted features between specific genes and diseases, then trained and optimized our model using XGBoost, termed MPxgb(AD). To determine our MPxgb(AD) prediction performance, we examined the top twenty predicted genes through an experimental screening pipeline. Our analysis identified potential AD risk genes: FRRS1, CTRAM, SCGB3A1, FAM92B/CIBAR2, and TMEFF2. FRRS1 and FAM92B are considered dark genes, while CTRAM, SCGB3A1, and TMEFF2 are connected to TREM2-TYROBP, IL-1ß-TNFα, and MTOR-APP AD-risk nodes, suggesting relevance to the pathogenesis of AD.


Asunto(s)
Enfermedad de Alzheimer , Enfermedad de Alzheimer/diagnóstico , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/metabolismo , Diagnóstico Precoz , Humanos , Aprendizaje Automático , Proteínas de la Membrana/metabolismo , Proteínas de Neoplasias
6.
BMC Bioinformatics ; 23(1): 37, 2022 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-35021991

RESUMEN

BACKGROUND: LINCS, "Library of Integrated Network-based Cellular Signatures", and IDG, "Illuminating the Druggable Genome", are both NIH projects and consortia that have generated rich datasets for the study of the molecular basis of human health and disease. LINCS L1000 expression signatures provide unbiased systems/omics experimental evidence. IDG provides compiled and curated knowledge for illumination and prioritization of novel drug target hypotheses. Together, these resources can support a powerful new approach to identifying novel drug targets for complex diseases, such as Parkinson's disease (PD), which continues to inflict severe harm on human health, and resist traditional research approaches. RESULTS: Integrating LINCS and IDG, we built the Knowledge Graph Analytics Platform (KGAP) to support an important use case: identification and prioritization of drug target hypotheses for associated diseases. The KGAP approach includes strong semantics interpretable by domain scientists and a robust, high performance implementation of a graph database and related analytical methods. Illustrating the value of our approach, we investigated results from queries relevant to PD. Approved PD drug indications from IDG's resource DrugCentral were used as starting points for evidence paths exploring chemogenomic space via LINCS expression signatures for associated genes, evaluated as target hypotheses by integration with IDG. The KG-analytic scoring function was validated against a gold standard dataset of genes associated with PD as elucidated, published mechanism-of-action drug targets, also from DrugCentral. IDG's resource TIN-X was used to rank and filter KGAP results for novel PD targets, and one, SYNGR3 (Synaptogyrin-3), was manually investigated further as a case study and plausible new drug target for PD. CONCLUSIONS: The synergy of LINCS and IDG, via KG methods, empowers graph analytics methods for the investigation of the molecular basis of complex diseases, and specifically for identification and prioritization of novel drug targets. The KGAP approach enables downstream applications via integration with resources similarly aligned with modern KG methodology. The generality of the approach indicates that KGAP is applicable to many disease areas, in addition to PD, the focus of this paper.


Asunto(s)
Enfermedad de Parkinson , Biblioteca de Genes , Genoma , Humanos , Iluminación , Enfermedad de Parkinson/tratamiento farmacológico , Enfermedad de Parkinson/genética , Reconocimiento de Normas Patrones Automatizadas
7.
Curr Protoc ; 2(1): e355, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-35085427

RESUMEN

The Illuminating the Druggable Genome (IDG) consortium is a National Institutes of Health (NIH) Common Fund program designed to enhance our knowledge of under-studied proteins, more specifically, proteins unannotated within the three most commonly drug-targeted protein families: G-protein coupled receptors, ion channels, and protein kinases. Since 2014, the IDG Knowledge Management Center (IDG-KMC) has generated several open-access datasets and resources that jointly serve as a highly translational machine-learning-ready knowledgebase focused on human protein-coding genes and their products. The goal of the IDG-KMC is to develop comprehensive integrated knowledge for the druggable genome to illuminate the uncharacterized or poorly annotated portion of the druggable genome. The tools derived from the IDG-KMC provide either user-friendly visualizations or ways to impute the knowledge about potential targets using machine learning strategies. In the following protocols, we describe how to use each web-based tool to accelerate illumination in under-studied proteins. © 2022 The Authors. Current Protocols published by Wiley Periodicals LLC. Basic Protocol 1: Interacting with the Pharos user interface Basic Protocol 2: Accessing the data in Harmonizome Basic Protocol 3: The ARCHS4 resource Basic Protocol 4: Making predictions about gene function with PrismExp Basic Protocol 5: Using Geneshot to illuminate knowledge about under-studied targets Basic Protocol 6: Exploring under-studied targets with TIN-X Basic Protocol 7: Interacting with the DrugCentral user interface Basic Protocol 8: Estimating Anti-SARS-CoV-2 activities with DrugCentral REDIAL-2020 Basic Protocol 9: Drug Set Enrichment Analysis using Drugmonizome Basic Protocol 10: The Drugmonizome-ML Appyter Basic Protocol 11: The Harmonizome-ML Appyter Basic Protocol 12: GWAS target illumination with TIGA Basic Protocol 13: Prioritizing kinases for lists of proteins and phosphoproteins with KEA3 Basic Protocol 14: Converting PubMed searches to drug sets with the DrugShot Appyter.


Asunto(s)
Bases de Datos Genéticas , Genoma , COVID-19 , Humanos , Aprendizaje Automático , Proteínas , SARS-CoV-2
8.
Cell Rep ; 36(12): 109720, 2021 09 21.
Artículo en Inglés | MEDLINE | ID: mdl-34551296

RESUMEN

Pathological hyperphosphorylation and aggregation of tau (pTau) and neuroinflammation, driven by interleukin-1ß (IL-1ß), are the major hallmarks of tauopathies. Here, we show that pTau primes and activates IL-1ß. First, RNA-sequence analysis suggests paired-helical filaments (PHFs) from human tauopathy brain primes nuclear factor κB (NF-κB), chemokine, and IL-1ß signaling clusters in human primary microglia. Treating microglia with pTau-containing neuronal media, exosomes, or PHFs causes IL-1ß activation, which is NLRP3, ASC, and caspase-1 dependent. Suppression of pTau or ASC reduces tau pathology and inflammasome activation in rTg4510 and hTau mice, respectively. Although the deletion of MyD88 prevents both IL-1ß expression and activation in the hTau mouse model of tauopathy, ASC deficiency in myeloid cells reduces pTau-induced IL-1ß activation and improves cognitive function in hTau mice. Finally, pTau burden co-exists with elevated IL-1ß and ASC in autopsy brains of human tauopathies. Together, our results suggest pTau activates IL-1ß via MyD88- and NLRP3-ASC-dependent pathways in myeloid cells, including microglia.


Asunto(s)
Inflamasomas/metabolismo , Interleucina-1beta/metabolismo , Transducción de Señal , Tauopatías/patología , Proteínas tau/metabolismo , Animales , Proteínas Adaptadoras de Señalización CARD/genética , Proteínas Adaptadoras de Señalización CARD/metabolismo , Caspasa 1/metabolismo , Células Cultivadas , Modelos Animales de Enfermedad , Regulación hacia Abajo/efectos de los fármacos , Doxorrubicina/farmacología , Humanos , Interleucina-1beta/genética , Ratones , Ratones Endogámicos C57BL , Microglía/citología , Microglía/metabolismo , Células Mieloides/citología , Células Mieloides/metabolismo , Factor 88 de Diferenciación Mieloide/genética , Factor 88 de Diferenciación Mieloide/metabolismo , FN-kappa B/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/genética , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Tauopatías/metabolismo , Proteínas tau/genética
9.
PLoS One ; 15(3): e0230026, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32208437

RESUMEN

Pathological accumulation of microtubule associated protein tau in neurons is a major neuropathological hallmark of Alzheimer's disease (AD) and related tauopathies. Several attempts have been made to promote clearance of pathological tau (p-Tau) from neurons. Transcription factor EB (TFEB) has shown to clear p-Tau from neurons via autophagy. However, sustained TFEB activation and autophagy can create burden on cellular bioenergetics and can be deleterious. Here, we modified previously described two-plasmid systems of Light Activated Protein (LAP) from bacterial transcription factor-EL222 and Light Responsive Element (LRE) to encode TFEB. Upon blue-light (465 nm) illumination, the conformation changes in LAP induced LRE-driven expression of TFEB, its nuclear entry, TFEB-mediated expression of autophagy-lysosomal genes and clearance of p-Tau from neuronal cells and AD patient-derived human iPSC-neurons. Turning the blue-light off reversed the expression of TFEB-target genes and attenuated p-Tau clearance. Together, these results suggest that optically regulated TFEB expression unlocks the potential of opto-therapeutics to treat AD and other dementias.


Asunto(s)
Autofagia , Luz , Neuronas/patología , Neuronas/efectos de la radiación , Proteínas tau/metabolismo , Células HEK293 , Humanos , Neuronas/metabolismo , Señales de Localización Nuclear/metabolismo , Tauopatías/metabolismo , Tauopatías/patología , Proteínas tau/química
10.
Front Mol Neurosci ; 10: 69, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28367114

RESUMEN

Increasing evidence suggests that hyperphosphorylation and aggregation of microtubule-associated protein tau (MAPT or tau) correlates with the development of cognitive impairment in Alzheimer's disease (AD) and related tauopathies. While numerous attempts have been made to model AD-relevant tau pathology in various animal models, there has been very limited success for these models to fully recapitulate the progression of disease as seen in human tauopathies. Here, we performed whole genome gene expression in a genomic mouse model of tauopathy that expressed human MAPT gene under the control of endogenous human MAPT promoter and also were complete knockout for endogenous mouse tau [referred to as 'hTau MaptKO(Duke)' mice]. First, whole genome expression analysis revealed 64 genes, which were differentially expressed (32 up-regulated and 32 down-regulated) in the hippocampus of 6-month-old hTau MaptKO(Duke) mice compared to age-matched non-transgenic controls. Genes relevant to neuronal function or neurological disease include up-regulated genes: PKC-alpha (Prkca), MECP2 (Mecp2), STRN4 (Strn4), SLC40a1 (Slc40a1), POLD2 (Pold2), PCSK2 (Pcsk2), and down-regulated genes: KRT12 (Krt12), LASS1 (Cers1), PLAT (Plat), and NRXN1 (Nrxn1). Second, network analysis suggested anatomical structure development, cellular metabolic process, cell death, signal transduction, and stress response were significantly altered biological processes in the hTau MaptKO(Duke) mice as compared to age-matched non-transgenic controls. Further characterization of a sub-group of significantly altered genes revealed elevated phosphorylation of MECP2 (methyl-CpG-binding protein-2), which binds to methylated CpGs and associates with chromatin, in hTau MaptKO(Duke) mice compared to age-matched controls. Third, phoshpho-MECP2 was elevated in autopsy brain samples from human AD compared to healthy controls. Finally, siRNA-mediated knockdown of MECP2 in human tau expressing N2a cells resulted in a significant decrease in total and phosphorylated tau. Together, these results suggest that MECP2 is a potential novel regulator of tau pathology relevant to AD and tauopathies.

11.
Eukaryot Cell ; 13(9): 1207-21, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-25038082

RESUMEN

Candida albicans vacuoles are central to many critical biological processes, including filamentation and in vivo virulence. The V-ATPase proton pump is a multisubunit complex responsible for organellar acidification and is essential for vacuolar biogenesis and function. To study the function of the V1B subunit of C. albicans V-ATPase, we constructed a tetracycline-regulatable VMA2 mutant, tetR-VMA2. Inhibition of VMA2 expression resulted in the inability to grow at alkaline pH and altered resistance to calcium, cold temperature, antifungal drugs, and growth on nonfermentable carbon sources. Furthermore, V-ATPase was unable to fully assemble at the vacuolar membrane and was impaired in proton transport and ATPase-specific activity. VMA2 repression led to vacuolar alkalinization in addition to abnormal vacuolar morphology and biogenesis. Key virulence-related traits, including filamentation and secretion of degradative enzymes, were markedly inhibited. These results are consistent with previous studies of C. albicans V-ATPase; however, differential contributions of the V-ATPase Vo and V1 subunits to filamentation and secretion are observed. We also make the novel observation that inhibition of C. albicans V-ATPase results in increased susceptibility to osmotic stress. Notably, V-ATPase inhibition under conditions of nitrogen starvation results in defects in autophagy. Lastly, we show the first evidence that V-ATPase contributes to virulence in an acidic in vivo system by demonstrating that the tetR-VMA2 mutant is avirulent in a Caenorhabditis elegans infection model. This study illustrates the fundamental requirement of V-ATPase for numerous key virulence-related traits in C. albicans and demonstrates that the contribution of V-ATPase to virulence is independent of host pH.


Asunto(s)
Autofagia/genética , Candida albicans/enzimología , Subunidades de Proteína/genética , ATPasas de Translocación de Protón Vacuolares/genética , Animales , Caenorhabditis elegans/genética , Caenorhabditis elegans/microbiología , Candida albicans/genética , Candida albicans/patogenicidad , Concentración de Iones de Hidrógeno , Subunidades de Proteína/química , Subunidades de Proteína/metabolismo , Estrés Fisiológico/genética , ATPasas de Translocación de Protón Vacuolares/química , ATPasas de Translocación de Protón Vacuolares/metabolismo , Vacuolas/enzimología , Vacuolas/genética , Virulencia/genética
12.
Eukaryot Cell ; 12(10): 1369-82, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23913543

RESUMEN

The vacuolar membrane ATPase (V-ATPase) is a protein complex that utilizes ATP hydrolysis to drive protons from the cytosol into the vacuolar lumen, acidifying the vacuole and modulating several key cellular response systems in Saccharomyces cerevisiae. To study the contribution of V-ATPase to the biology and virulence attributes of the opportunistic fungal pathogen Candida albicans, we created a conditional mutant in which VMA3 was placed under the control of a tetracycline-regulated promoter (tetR-VMA3 strain). Repression of VMA3 in the tetR-VMA3 strain prevents V-ATPase assembly at the vacuolar membrane and reduces concanamycin A-sensitive ATPase-specific activity and proton transport by more than 90%. Loss of C. albicans V-ATPase activity alkalinizes the vacuolar lumen and has pleiotropic effects, including pH-dependent growth, calcium sensitivity, and cold sensitivity. The tetR-VMA3 strain also displays abnormal vacuolar morphology, indicative of defective vacuolar membrane fission. The tetR-VMA3 strain has impaired aspartyl protease and lipase secretion, as well as attenuated virulence in an in vitro macrophage killing model. Repression of VMA3 suppresses filamentation, and V-ATPase-dependent filamentation defects are not rescued by overexpression of RIM8, MDS3, EFG1, CST20, or UME6, which encode positive regulators of filamentation. Specific chemical inhibition of Vma3p function also results in defective filamentation. These findings suggest either that V-ATPase functions downstream of these transcriptional regulators or that V-ATPase function during filamentation involves independent mechanisms and alternative signaling pathways. Taken together, these data indicate that V-ATPase activity is a fundamental requirement for several key virulence-associated traits in C. albicans.


Asunto(s)
Candida albicans/enzimología , Exocitosis , Proteínas Fúngicas/metabolismo , Multimerización de Proteína , ATPasas de Translocación de Protón Vacuolares/metabolismo , Proteasas de Ácido Aspártico/metabolismo , Candida albicans/citología , Candida albicans/metabolismo , Candida albicans/patogenicidad , Proteínas Fúngicas/genética , Lipasa/metabolismo , Mutación , ATPasas de Translocación de Protón Vacuolares/genética , Vacuolas/metabolismo , Vacuolas/ultraestructura , Virulencia
13.
J Biol Chem ; 288(9): 6190-201, 2013 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-23316054

RESUMEN

Vacuolar proton-translocating ATPase (V-ATPase) is a central regulator of cellular pH homeostasis, and inactivation of all V-ATPase function has been shown to prevent infectivity in Candida albicans. V-ATPase subunit a of the Vo domain (Voa) is present as two fungal isoforms: Stv1p (Golgi) and Vph1p (vacuole). To delineate the individual contribution of Stv1p and Vph1p to C. albicans physiology, we created stv1Δ/Δ and vph1Δ/Δ mutants and compared them to the corresponding reintegrant strains (stv1Δ/ΔR and vph1Δ/ΔR). V-ATPase activity, vacuolar physiology, and in vitro virulence-related phenotypes were unaffected in the stv1Δ/Δ mutant. The vph1Δ/Δ mutant exhibited defective V1Vo assembly and a 90% reduction in concanamycin A-sensitive ATPase activity and proton transport in purified vacuolar membranes, suggesting that the Vph1p isoform is essential for vacuolar V-ATPase activity in C. albicans. The vph1Δ/Δ cells also had abnormal endocytosis and vacuolar morphology and an alkalinized vacuolar lumen (pHvph1Δ/Δ = 6.8 versus pHvph1Δ/ΔR = 5.8) in both yeast cells and hyphae. Secreted protease and lipase activities were significantly reduced, and M199-induced filamentation was impaired in the vph1Δ/Δ mutant. However, the vph1Δ/Δ cells remained competent for filamentation induced by Spider media and YPD, 10% FCS, and biofilm formation and macrophage killing were unaffected in vitro. These studies suggest that different virulence mechanisms differentially rely on acidified vacuoles and that the loss of both vacuolar (Vph1p) and non-vacuolar (Stv1p) V-ATPase activity is necessary to affect in vitro virulence-related phenotypes. As a determinant of C. albicans pathogenesis, vacuolar pH alone may prove less critical than originally assumed.


Asunto(s)
Biopelículas , Candida albicans/fisiología , Candida albicans/patogenicidad , Sitios de Carácter Cuantitativo , ATPasas de Translocación de Protón Vacuolares/metabolismo , Factores de Virulencia/metabolismo , Dominio Catalítico , Eliminación de Gen , Concentración de Iones de Hidrógeno , Transporte Iónico/fisiología , Protones , ATPasas de Translocación de Protón Vacuolares/genética , Vacuolas/enzimología , Vacuolas/genética , Factores de Virulencia/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...