Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Front Immunol ; 15: 1353353, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38571939

RESUMEN

As severe acute respiratory coronavirus 2 (SARS-CoV-2) variants continue to emerge, it is important to characterize immune responses against variants which can inform on protection efficacies following booster vaccination. In this study, neutralizing breadth and antigen-specific CD8+ T cell responses were analyzed in both infection-naïve and infection-experienced individuals following administration of a booster bivalent Wuhan-Hu-1+BA.4/5 Comirnaty® mRNA vaccine. Significantly higher neutralizing titers were found after this vaccination compared to the pre-third booster vaccination time point. Further, neutralizing breadth to omicron variants, including BA.1, BA.2, BA.5, BQ.1 and XBB.1, was found to be boosted following bivalent vaccination. SARS-CoV-2-specific CD8+ T cells were identified, but with no evidence that frequencies were increased following booster vaccinations. Spike protein-specific CD8+ T cells were the only responses detected after vaccination and non-spike-specific CD8+ T cells were only detected after infection. Both spike-specific and non-spike-specific CD8+ T cells were found at much lower frequencies than CD8+ T cells specific to cytomegalovirus (CMV), Epstein-Barr virus (EBV) and influenza (Flu). Taken together, these results show that the bivalent Wuhan-Hu-1+BA.4/5 Comirnaty® mRNA vaccine boosted the breadth of neutralization to newer SARS-CoV-2 variants and that vaccination is able to induce spike protein-specific CD8+ T cell responses, which are maintained longitudinally.


Asunto(s)
COVID-19 , Infecciones por Virus de Epstein-Barr , Adulto , Humanos , Anticuerpos Neutralizantes , Vacuna BNT162 , Linfocitos T CD8-positivos , SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus , Vacunas de ARNm , COVID-19/prevención & control , Herpesvirus Humano 4
2.
Viruses ; 15(9)2023 09 21.
Artículo en Inglés | MEDLINE | ID: mdl-37766376

RESUMEN

Nirmatrelvir, which targets the SARS-CoV-2 main protease (Mpro), is the first-in-line drug for prevention and treatment of severe COVID-19, and additional Mpro inhibitors are in development. However, the risk of resistance development threatens the future efficacy of such direct-acting antivirals. To gain knowledge on viral correlates of resistance to Mpro inhibitors, we selected resistant SARS-CoV-2 under treatment with the nirmatrelvir-related protease inhibitor boceprevir. SARS-CoV-2 selected during five escape experiments in VeroE6 cells showed cross-resistance to nirmatrelvir with up to 7.3-fold increased half-maximal effective concentration compared to original SARS-CoV-2, determined in concentration-response experiments. Sequence analysis revealed that escape viruses harbored Mpro substitutions L50F and A173V. For reverse genetic studies, these substitutions were introduced into a cell-culture-infectious SARS-CoV-2 clone. Infectivity titration and analysis of genetic stability of cell-culture-derived engineered SARS-CoV-2 mutants showed that L50F rescued the fitness cost conferred by A173V. In the concentration-response experiments, A173V was the main driver of resistance to boceprevir and nirmatrelvir. Structural analysis of Mpro suggested that A173V can cause resistance by making boceprevir and nirmatrelvir binding less favorable. This study contributes to a comprehensive overview of the resistance profile of the first-in-line COVID-19 treatment nirmatrelvir and can thus inform population monitoring and contribute to pandemic preparedness.


Asunto(s)
Antiinfecciosos , COVID-19 , Hepatitis C Crónica , Humanos , Inhibidores de Proteasas/farmacología , Antivirales/farmacología , SARS-CoV-2/genética , Tratamiento Farmacológico de COVID-19 , Inhibidores Enzimáticos , Lactamas
3.
Virology ; 585: 179-185, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37356253

RESUMEN

With no approved antiviral therapies, the continuous emergence and re-emergence of tick-borne encephalitis virus (TBEV) and yellow fever virus (YFV) is a rising concern. We performed head-to-head comparisons of the antiviral activity of available nucleos(t)ide analogs (nucs) using relevant human cell lines. Eight existing nucs inhibited TBEV and/or YFV with differential activity between cell lines and viruses. Remdesivir, uprifosbuvir and sofosbuvir were the most potent drugs against TBEV and YFV in liver cells, but they had reduced activity in neural cells, whereas galidesivir retained uniform activity across cell lines and viruses. Ribavirin, valopicitabine, molnupiravir and GS-6620 exhibited only moderate antiviral activity. We found antiviral activity for drugs previously reported as inactive, demonstrating the importance of using human cell lines and comparative experimental assays when screening the activity of nucs. The relatively high antiviral activity of remdesivir, sofosbuvir and uprifosbuvir against TBEV and YFV merits further investigation in clinical studies.


Asunto(s)
Virus de la Encefalitis Transmitidos por Garrapatas , Encefalitis Transmitida por Garrapatas , Fiebre Amarilla , Humanos , Sofosbuvir/farmacología , Sofosbuvir/uso terapéutico , Fiebre Amarilla/tratamiento farmacológico , Línea Celular , Virus de la Fiebre Amarilla , Antivirales/farmacología , Antivirales/uso terapéutico
4.
EBioMedicine ; 89: 104475, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36870117

RESUMEN

BACKGROUND: Given the importance of vaccination against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in the prevention of severe coronavirus disease 2019 (COVID-19), detailed long-term analyses of neutralising antibody responses are required to inform immunisation strategies. METHODS: In this study, longitudinal neutralising antibody titres to an ancestral SARS-CoV-2 isolate and cross-neutralisation to delta and omicron isolates were analysed in individuals previously infected with SARS-CoV-2, vaccinated against COVID-19, or a complex mix thereof with up to two years of follow-up. FINDINGS: Both infection-induced and vaccine-induced neutralising responses against SARS-CoV-2 appeared to follow similar decay patterns. Following vaccination in previously infected individuals, neutralising antibody responses were more durable than prior to vaccination. Further, this study shows that vaccination after infection, as well as booster vaccination, increases the cross-neutralising potential to both delta and omicron SARS-CoV-2 variants. INTERPRETATION: Taken together, these results suggest that neither type of antigen exposure is superior for neutralising antibody durability. However, these results support vaccination to increase the durability and cross-neutralisation potential of neutralising responses, thereby enhancing protection against severe COVID-19. FUNDING: This work was supported by grants from The Capital Region of Denmark's Research Foundation, the Novo Nordisk Foundation, the Independent Research Fund Denmark, the Candys Foundation, and the Danish Agency for Science and Higher Education.


Asunto(s)
COVID-19 , Humanos , SARS-CoV-2 , Vacunas contra la COVID-19 , Vacunación , Inmunización Secundaria , Anticuerpos Neutralizantes , Anticuerpos Antivirales
5.
Lancet Microbe ; 4(3): e140-e148, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36681093

RESUMEN

BACKGROUND: Capsid virus-like particles (cVLP) have proven safe and immunogenic and can be a versatile platform to counter pandemics. We aimed to clinically test a modular cVLP COVID-19 vaccine in individuals who were naive to SARS-CoV-2. METHODS: In this phase 1, single-centre, dose-escalation, adjuvant-selection, open-label clinical trial, we recruited participants at the Radboud University Medical Center in Nijmegen, Netherlands, and sequentially assigned them to seven groups. Eligible participants were healthy, aged 18-55 years, and tested negative for SARS-CoV-2 and anti-SARS-CoV-2 antibodies. Participants were vaccinated intramuscularly on days 0 and 28 with 6 µg, 12 µg, 25 µg, 50 µg, or 70 µg of the cVLP-based COVID-19 vaccine (ABNCoV2). A subgroup received MF59-adjuvanted ABNCoV2. Follow-up was for 24 weeks after second vaccination. The primary objectives were to assess the safety and tolerability of ABNCoV2 and to identify a dose that optimises the tolerability-immunogenicity ratio 14 days after the first vaccination. The primary safety endpoint was the number of related grade 3 adverse events and serious adverse events in the intention-to-treat population. The primary immunogenicity endpoint was the concentration of ABNCoV2-specific antibodies. The trial is registered with ClinicalTrials.gov, NCT04839146. FINDINGS: 45 participants (six to nine per group) were enrolled between March 15 and July 15, 2021. Participants had a total of 249 at least possibly related solicited adverse events (185 grade 1, 63 grade 2, and one grade 3) within a week after vaccination. Two serious adverse events occurred; one was classified as a possible adverse reaction. Antibody titres were dose-dependent with levels plateauing at a vaccination dose of 25-70 µg ABNCoV2. After second vaccination, live virus neutralisation activity against major SARS-CoV-2 variants was high but was lower with an omicron (BA.1) variant. Vaccine-specific IFNγ+ CD4+ T cells were induced. INTERPRETATION: Immunisation with ABNCoV2 was well tolerated, safe, and resulted in a functional immune response. The data support the need for additional clinical development of ABNCoV2 as a second-generation SARS-CoV-2 vaccine. The modular cVLP platform will accelerate vaccine development, beyond SARS-CoV-2. FUNDING: EU, Carlsberg Foundation, and the Novo Nordisk Foundation.


Asunto(s)
COVID-19 , Vacunas Virales , Humanos , Adyuvantes Inmunológicos , Cápside , Proteínas de la Cápside , Vacunas contra la COVID-19 , SARS-CoV-2 , Vacunas Virales/efectos adversos
6.
Sci Adv ; 8(51): eadd7197, 2022 12 21.
Artículo en Inglés | MEDLINE | ID: mdl-36542720

RESUMEN

The oral protease inhibitor nirmatrelvir is of key importance for prevention of severe coronavirus disease 2019 (COVID-19). To facilitate resistance monitoring, we studied severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) escape from nirmatrelvir in cell culture. Resistant variants harbored combinations of substitutions in the SARS-CoV-2 main protease (Mpro). Reverse genetics revealed that E166V and L50F + E166V conferred high resistance in infectious culture, replicon, and Mpro systems. While L50F, E166V, and L50F + E166V decreased replication and Mpro activity, L50F and L50F + E166V variants had high fitness in the infectious system. Naturally occurring L50F compensated for fitness cost of E166V and promoted viral escape. Molecular dynamics simulations revealed that E166V and L50F + E166V weakened nirmatrelvir-Mpro binding. Polymerase inhibitor remdesivir and monoclonal antibody bebtelovimab retained activity against nirmatrelvir-resistant variants, and combination with nirmatrelvir enhanced treatment efficacy compared to individual compounds. These findings have implications for monitoring and ensuring treatments with efficacy against SARS-CoV-2 and emerging sarbecoviruses.


Asunto(s)
COVID-19 , Enfermedades Transmisibles , Humanos , SARS-CoV-2/genética , Técnicas de Cultivo de Célula , Lactamas , Nitrilos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...