Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
2.
Protein Sci ; 32(7): e4701, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37313620

RESUMEN

The glycerophosphodiester phosphodiesterase (GDPD)-like SMaseD/PLD domain family, which includes phospholipase D (PLD) toxins in recluse spiders and actinobacteria, evolved anciently in bacteria from the GDPD. The PLD enzymes retained the core (ß/α)8 barrel fold of GDPD, while gaining a signature C-terminal expansion motif and losing a small insertion domain. Using sequence alignments and phylogenetic analysis, we infer that the C-terminal motif derives from a segment of an ancient bacterial PLAT domain. Formally, part of a protein containing a PLAT domain repeat underwent fusion to the C terminus of a GDPD barrel, leading to attachment of a segment of a PLAT domain, followed by a second complete PLAT domain. The complete domain was retained only in some basal homologs, but the PLAT segment was conserved and repurposed as the expansion motif. The PLAT segment corresponds to strands ß7-ß8 of a ß-sandwich, while the expansion motif as represented in spider PLD toxins has been remodeled as an α-helix, a ß-strand, and an ordered loop. The GDPD-PLAT fusion led to two acquisitions in founding the GDPD-like SMaseD/PLD family: (1) a PLAT domain that presumably supported early lipase activity by mediating membrane association, and (2) an expansion motif that putatively stabilized the catalytic domain, possibly compensating for, or permitting, loss of the insertion domain. Of wider significance, messy domain shuffling events can leave behind scraps of domains that can be salvaged, remodeled, and repurposed.


Asunto(s)
Fosfolipasa D , Fosfolipasa D/genética , Fosfolipasa D/química , Fosfolipasa D/metabolismo , Secuencia de Aminoácidos , Filogenia , Alineación de Secuencia , Dominio Catalítico , Bacterias/metabolismo
3.
PLoS Comput Biol ; 18(2): e1009871, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-35180220

RESUMEN

Spider venom GDPD-like phospholipases D (SicTox) have been identified to be one of the major toxins in recluse spider venom. They are divided into two major clades: the α clade and the ß clade. Most α clade toxins present high activity against lipids with choline head groups such as sphingomyelin, while activities in ß clade toxins vary and include preference for substrates containing ethanolamine headgroups (Sicarius terrosus, St_ßIB1). A structural comparison of available structures of phospholipases D (PLDs) reveals a conserved aromatic cage in the α clade. To test the potential influence of the aromatic cage on membrane-lipid specificity we performed molecular dynamics (MD) simulations of the binding of several PLDs onto lipid bilayers containing choline headgroups; two SicTox from the α clade, Loxosceles intermedia αIA1 (Li_αIA) and Loxosceles laeta αIII1 (Ll_αIII1), and one from the ß clade, St_ßIB1. The simulation results reveal that the aromatic cage captures a choline-headgroup and suggest that the cage plays a major role in lipid specificity. We also simulated an engineered St_ßIB1, where we introduced the aromatic cage, and this led to binding with choline-containing lipids. Moreover, a multiple sequence alignment revealed the conservation of the aromatic cage among the α clade PLDs. Here, we confirmed that the i-face of α and ß clade PLDs is involved in their binding to choline and ethanolamine-containing bilayers, respectively. Furthermore, our results suggest a major role in choline lipid recognition of the aromatic cage of the α clade PLDs. The MD simulation results are supported by in vitro liposome binding assay experiments.


Asunto(s)
Fosfolipasa D , Venenos de Araña , Colina , Etanolamina , Fosfolipasa D/metabolismo , Hidrolasas Diéster Fosfóricas/química , Esfingomielinas , Venenos de Araña/química , Venenos de Araña/metabolismo
4.
Zookeys ; 964: 1-30, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32939145

RESUMEN

The Caribbean biodiversity hotspot harbors vast reserves of undiscovered species. A large-scale inventory of Caribbean arachnids (CarBio) is uncovering new species across the arachnid tree of life, and allowing inference of the evolutionary history that has generated this diversity. Herein we describe ten new species of Heteroonops (Oonopidae, or goblin spiders), from Hispaniola: H. scapula sp. nov., H. jurassicus sp. nov., H. aylinalegreae sp. nov., H. verruca sp. nov., H. renebarbai sp. nov., H. yuma sp. nov., H. carlosviquezi sp. nov., H. gabrielsantosi sp. nov., H. solanllycarreroae sp. nov. and H. constanza sp. nov. The occurrence of the pantropical type species Heteroonops spinimanus (Simon, 1891) is reported and new localities are given for: H. validus (Bryant, 1948), H. vega (Platnick & Dupérré, 2009) and H. castelloides (Platnick & Dupérré, 2009). Molecular phylogenies indicate substantial genetic divergence separating these taxa. This work adds to evidence that the depth of diversity in the Caribbean biodiversity hotspot is particularly striking for tiny taxa living in leaf litter.

5.
PeerJ ; 8: e8976, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32391201

RESUMEN

BACKGROUND: Modern molecular analyses are often inconsistent with pre-cladistic taxonomic hypotheses, frequently indicating higher richness than morphological taxonomy estimates. Among Caribbean spiders, widespread species are relatively few compared to the prevalence of single island endemics. The taxonomic hypothesis Gasteracantha cancriformis circumscribes a species with profuse variation in size, color and body form. Distributed throughout the Neotropics, G. cancriformis is the only morphological species of Gasteracantha in the New World in this globally distributed genus. METHODS: We inferred phylogenetic relationships across Neotropical populations of Gasteracantha using three target genes. Within the Caribbean, we estimated genetic diversity, population structure, and gene flow among island populations. RESULTS: Our findings revealed a single widespread species of Gasteracantha throughout the Caribbean, G. cancriformis, while suggesting two recently divergent mainland populations that may represent separate species, diverging linages, or geographically isolated demes. The concatenated and COI (Cytochrome c oxidase subunit 1) phylogeny supported a Caribbean clade nested within the New World. Genetic variability was high between island populations for our COI dataset; however, gene flow was also high, especially between large, adjacent islands. We found structured genetic and morphological variation within G. cancriformis island populations; however, this variation does not reflect genealogical relationships. Rather, isolation by distance and local morphological adaptation may explain the observed variation.

6.
Genome Biol ; 21(1): 15, 2020 01 23.
Artículo en Inglés | MEDLINE | ID: mdl-31969194

RESUMEN

BACKGROUND: Arthropods comprise the largest and most diverse phylum on Earth and play vital roles in nearly every ecosystem. Their diversity stems in part from variations on a conserved body plan, resulting from and recorded in adaptive changes in the genome. Dissection of the genomic record of sequence change enables broad questions regarding genome evolution to be addressed, even across hyper-diverse taxa within arthropods. RESULTS: Using 76 whole genome sequences representing 21 orders spanning more than 500 million years of arthropod evolution, we document changes in gene and protein domain content and provide temporal and phylogenetic context for interpreting these innovations. We identify many novel gene families that arose early in the evolution of arthropods and during the diversification of insects into modern orders. We reveal unexpected variation in patterns of DNA methylation across arthropods and examples of gene family and protein domain evolution coincident with the appearance of notable phenotypic and physiological adaptations such as flight, metamorphosis, sociality, and chemoperception. CONCLUSIONS: These analyses demonstrate how large-scale comparative genomics can provide broad new insights into the genotype to phenotype map and generate testable hypotheses about the evolution of animal diversity.


Asunto(s)
Artrópodos/genética , Evolución Molecular , Animales , Artrópodos/clasificación , Metilación de ADN , Especiación Genética , Variación Genética , Filogenia
7.
Sci Rep ; 9(1): 397, 2019 01 23.
Artículo en Inglés | MEDLINE | ID: mdl-30674906

RESUMEN

Island systems provide excellent arenas to test evolutionary hypotheses pertaining to gene flow and diversification of dispersal-limited organisms. Here we focus on an orbweaver spider genus Cyrtognatha (Tetragnathidae) from the Caribbean, with the aims to reconstruct its evolutionary history, examine its biogeographic history in the archipelago, and to estimate the timing and route of Caribbean colonization. Specifically, we test if Cyrtognatha biogeographic history is consistent with an ancient vicariant scenario (the GAARlandia landbridge hypothesis) or overwater dispersal. We reconstructed a species level phylogeny based on one mitochondrial (COI) and one nuclear (28S) marker. We then used this topology to constrain a time-calibrated mtDNA phylogeny, for subsequent biogeographical analyses in BioGeoBEARS of over 100 originally sampled Cyrtognatha individuals, using models with and without a founder event parameter. Our results suggest a radiation of Caribbean Cyrtognatha, containing 11 to 14 species that are exclusively single island endemics. Although biogeographic reconstructions cannot refute a vicariant origin of the Caribbean clade, possibly an artifact of sparse outgroup availability, they indicate timing of colonization that is much too recent for GAARlandia to have played a role. Instead, an overwater colonization to the Caribbean in mid-Miocene better explains the data. From Hispaniola, Cyrtognatha subsequently dispersed to, and diversified on, the other islands of the Greater, and Lesser Antilles. Within the constraints of our island system and data, a model that omits the founder event parameter from biogeographic analysis is less suitable than the equivalent model with a founder event.


Asunto(s)
ADN Mitocondrial/genética , Efecto Fundador , Modelos Genéticos , Filogenia , Arañas/clasificación , Arañas/genética , Animales , Región del Caribe , Filogeografía
8.
Front Ecol Evol ; 72019 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-33235882

RESUMEN

Pholcid spiders (Araneae: Pholcidae), officially "cellar spiders" but popularly known as "daddy long-legs," are renown for the potential of deadly toxic venom, even though venom composition and potency has never formally been studied. Here we detail the venom composition of male Physocyclus mexicanus using proteomic analyses and venom-gland transcriptomes ("venomics"). We also analyze the venom's potency on insects, and assemble available evidence regarding mammalian toxicity. The majority of the venom (51% of tryptic polypeptides and 62% of unique tryptic peptides) consists of proteins homologous to known venom toxins including enzymes (astacin metalloproteases, serine proteases and metalloendopeptidases, particularly neprilysins) and venom peptide neurotoxins. We identify 17 new groups of peptides (U1-17-PHTX) most of which are homologs of known venom peptides and are predicted to have an inhibitor cysteine knot fold; of these, 13 are confirmed in the proteome. Neprilysins (M13 peptidases), and astacins (M12 peptidases) are the most abundant venom proteins, respectively representing 15 and 11% of the individual proteins and 32 and 20% of the tryptic peptides detected in crude venom. Comparative evidence suggests that the neprilysin gene family is expressed in venoms across a range of spider taxa, but has undergone an expansion in the venoms of pholcids and may play a central functional role in these spiders. Bioassays of crude venoms on crickets resulted in an effective paralytic dose of 3.9 µg/g, which is comparable to that of crude venoms of Plectreurys tristis and other Synspermiata taxa. However, crickets exhibit flaccid paralysis and regions of darkening that are not observed after P. tristis envenomation. Documented bites on humans make clear that while these spiders can bite, the typical result is a mild sting with no long-lasting effects. Together, the evidence we present indicates pholcid venoms are a source of interesting new peptides and proteins, and effects of bites on humans and other mammals are inconsequential.

9.
BMC Evol Biol ; 18(1): 194, 2018 12 18.
Artículo en Inglés | MEDLINE | ID: mdl-30563447

RESUMEN

BACKGROUND: Venom-expressed sphingomyelinase D/phospholipase D (SMase D/PLD) enzymes evolved from the ubiquitous glycerophosphoryl diester phosphodiesterases (GDPD). Expression of GDPD-like SMaseD/PLD toxins in both arachnids and bacteria has inspired consideration of the relative contributions of lateral gene transfer and convergent recruitment in the evolutionary history of this lineage. Previous work recognized two distinct lineages, a SicTox-like (ST-like) clade including the arachnid toxins, and an Actinobacterial-toxin like (AT-like) clade including the bacterial toxins and numerous fungal homologs. RESULTS: Here we expand taxon sampling by homology detection to discover new GDPD-like SMase D/PLD homologs. The ST-like clade now includes homologs in a wider variety of arthropods along with a sister group in Cnidaria; the AT-like clade now includes additional fungal phyla and proteobacterial homologs; and we report a third clade expressed in diverse aquatic metazoan taxa, a few single-celled eukaryotes, and a few aquatic proteobacteria. GDPD-like SMaseD/PLDs have an ancient presence in chelicerates within the ST-like family and ctenophores within the Aquatic family. A rooted phylogenetic tree shows that the three clades derived from a basal paraphyletic group of proteobacterial GDPD-like SMase D/PLDs, some of which are on mobile genetic elements. GDPD-like SMase D/PLDs share a signature C-terminal motif and a shortened ßα1 loop, features that distinguish them from GDPDs. The three major clades also have active site loop signatures that distinguish them from GDPDs and from each other. Analysis of molecular phylogenies with respect to organismal relationships reveals a dynamic evolutionary history including both lateral gene transfer and gene duplication/loss. CONCLUSIONS: The GDPD-like SMaseD/PLD enzymes derive from a single ancient ancestor, likely proteobacterial, and radiated into diverse organismal lineages at least in part through lateral gene transfer.


Asunto(s)
Evolución Molecular , Fosfolipasa D/genética , Toxinas Biológicas/genética , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Animales , Secuencia Conservada , Operón/genética , Filogenia , Dominios Proteicos , Homología de Secuencia de Aminoácido
10.
PeerJ ; 6: e4691, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29876146

RESUMEN

Venom has been associated with the ecological success of many groups of organisms, most notably reptiles, gastropods, and arachnids. In some cases, diversification has been directly linked to tailoring of venoms for dietary specialization. Spiders in particular are known for their diverse venoms and wide range of predatory behaviors, although there is much to learn about scales of variation in venom composition and function. The current study focuses on venom characteristics in different sexes within a species of spider. We chose the genus Tetragnatha (Tetragnathidae) because of its unusual courtship behavior involving interlocking of the venom delivering chelicerae (i.e., the jaws), and several species in the genus are already known to have sexually dimorphic venoms. Here, we use transcriptome and proteome analyses to identify venom components that are dimorphic in Tetragnatha versicolor. We present cDNA sequences including unique, male-specific high molecular weight proteins that have remote, if any, detectable similarity to known venom components in spiders or other venomous lineages and have no detectable homologs in existing databases. While the function of these proteins is not known, their presence in association with the cheliceral locking mechanism during mating together with the presence of prolonged male-male mating attempts in a related, cheliceral-locking species (Doryonychus raptor) lacking the dimorphism suggests potential for a role in sexual communication.

11.
Toxicon ; 114: 45-52, 2016 May.
Artículo en Inglés | MEDLINE | ID: mdl-26908290

RESUMEN

Spider venom composition typically differs between sexes. This pattern is anecdotally thought to reflect differences in adult feeding biology. We used a phylogenetic approach to compare intersexual venom dimorphism between species that differ in adult niche dimorphism. Male and female venoms were compared within and between related species of Hawaiian Tetragnatha, a mainland congener, and outgroups. In some species of Hawaiian Tetragnatha adult females spin orb-webs and adult males capture prey while wandering, while in other species both males and females capture prey by wandering. We predicted that, if venom sexual dimorphism is primarily explained by differences in adult feeding biology, species in which both sexes forage by wandering would have monomorphic venoms or venoms with reduced dimorphism relative to species with different adult feeding biology. However, we found striking sexual dimorphism in venoms of both wandering and orb-weaving Tetragnatha species with males having high molecular weight components in their venoms that were absent in females, and a reduced concentration of low molecular weight components relative to females. Intersexual differences in venom composition within Tetragnatha were significantly larger than in non-Tetragnatha species. Diet composition was not different between sexes. This striking venom dimorphism is not easily explained by differences in feeding ecology or behavior. Rather, we hypothesize that the dimorphism reflects male-specific components that play a role in mating biology possibly in sexual stimulation, nuptial gifts and/or mate recognition.


Asunto(s)
Caracteres Sexuales , Venenos de Araña/química , Arañas/química , Animales , Conducta Alimentaria , Femenino , Hawaii , Masculino , Arañas/metabolismo , Arañas/fisiología
12.
PeerJ ; 3: e1422, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26618089

RESUMEN

The Caribbean island biota is characterized by high levels of endemism, the result of an interplay between colonization opportunities on islands and effective oceanic barriers among them. A relatively small percentage of the biota is represented by 'widespread species,' presumably taxa for which oceanic barriers are ineffective. Few studies have explored in detail the genetic structure of widespread Caribbean taxa. The cobweb spider Spintharus flavidus Hentz, 1850 (Theridiidae) is one of two described Spintharus species and is unique in being widely distributed from northern N. America to Brazil and throughout the Caribbean. As a taxonomic hypothesis, Spintharus "flavidus" predicts maintenance of gene flow among Caribbean islands, a prediction that seems contradicted by known S. flavidus biology, which suggests limited dispersal ability. As part of an extensive survey of Caribbean arachnids (project CarBio), we conducted the first molecular phylogenetic analysis of S. flavidus with the primary goal of testing the 'widespread species' hypothesis. Our results, while limited to three molecular loci, reject the hypothesis of a single widespread species. Instead this lineage seems to represent a radiation with at least 16 species in the Caribbean region. Nearly all are short range endemics with several distinct mainland groups and others are single island endemics. While limited taxon sampling, with a single specimen from S. America, constrains what we can infer about the biogeographical history of the lineage, clear patterns still emerge. Consistent with limited overwater dispersal, we find evidence for a single colonization of the Caribbean about 30 million years ago, coinciding with the timing of the GAARLandia landbridge hypothesis. In sum, S. "flavidus" is not a single species capable of frequent overwater dispersal, but rather a 30 my old radiation of single island endemics that provides preliminary support for a complex and contested geological hypothesis.

13.
Mol Phylogenet Evol ; 93: 107-17, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26220837

RESUMEN

Islands have played a key role in understanding species formation ever since Darwin's work on the Galapagos and Wallace's work in the Malay Archipelago. Like oceanic islands, habitat 'islands', such as mountaintops and caves similarly may drive diversification. Here we examine patterns of diversification in the tailless whip spider genus Phrynus Larmarck, 1809 (Amblypygida: Phrynidae) a system that shows evidence of diversification under the influence of 'islands within islands'. We estimate phylogeographic history and measure genetic diversity among representatives of three nominal Phrynus species from epigean and cave systems of Puerto Rico and nearby islands. Data from five loci (mitochondrial 12S, 16S, Cox1; nuclear H3, 28S) were used to generate phylogenetic hypotheses and to assess species monophyly and phylogeographic relationships. Genetic divergences and population limits were estimated and assessed using the Geneious barcoding plugin and the genealogical sorting index. We find that mtDNA sequence divergences within each of the three Phrynus species range between 15% and 20%. Genetic divergence is structured at three spatial scales: among islands in a manner consistent with the GAARlandia hypothesis, among bedrock formations within Puerto Rico, and among caves within these formations. Every isolated cave system contains a unique mtDNA genetic lineage of Phrynus, with divergence among cave systems far exceeding that within. In some localities epigean specimens nest among cave taxa, in others caves are monophyletic. Remarkably, clades that show up to 20% mtDNA sequence divergence show little or no variation in the nuclear markers. We interpret this pattern as resulting from extreme conservation of our nuclear markers rather than male sex-biased dispersal, based on high conservation of 28S and H3 between our individuals and other amblypygid genera that are restricted to Africa. While this study includes but a tiny fraction of Caribbean caves, our findings suggest Phrynus may be much more diverse than hitherto thought, at least in terms of mtDNA diversity, and that the arthropod fauna of caves may represent a dimension of biodiversity that is yet to be discovered in the Caribbean biodiversity hotspot.


Asunto(s)
Arañas/genética , Distribución Animal , Animales , Biodiversidad , Cuevas , ADN Mitocondrial/genética , Especiación Genética , Variación Genética , Tipificación de Secuencias Multilocus , Filogenia , Filogeografía , Puerto Rico , Arañas/clasificación
14.
Structure ; 23(7): 1283-92, 2015 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-26073605

RESUMEN

Arthropod venoms consist primarily of peptide toxins that are injected into their prey with devastating consequences. Venom proteins are thought to be recruited from endogenous body proteins and mutated to yield neofunctionalized toxins with remarkable affinity for specific subtypes of ion channels and receptors. However, the evolutionary history of venom peptides remains poorly understood. Here we show that a neuropeptide hormone has been convergently recruited into the venom of spiders and centipedes and evolved into a highly stable toxin through divergent modification of the ancestral gene. High-resolution structures of representative hormone-derived toxins revealed they possess a unique structure and disulfide framework and that the key structural adaptation in weaponization of the ancestral hormone was loss of a C-terminal α helix, an adaptation that occurred independently in spiders and centipedes. Our results raise a new paradigm for toxin evolution and highlight the value of structural information in providing insight into protein evolution.


Asunto(s)
Proteínas de Artrópodos/genética , Proteínas del Tejido Nervioso/genética , Venenos de Araña/genética , Secuencia de Aminoácidos , Animales , Proteínas de Artrópodos/química , Proteínas de Artrópodos/farmacología , Dípteros/efectos de los fármacos , Evolución Molecular , Datos de Secuencia Molecular , Filogenia , Estabilidad Proteica , Estructura Secundaria de Proteína , Venenos de Araña/química , Venenos de Araña/farmacología , Arañas/genética
15.
J Biol Chem ; 290(17): 10994-1007, 2015 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-25752604

RESUMEN

Venoms of the sicariid spiders contain phospholipase D enzyme toxins that can cause severe dermonecrosis and even death in humans. These enzymes convert sphingolipid and lysolipid substrates to cyclic phosphates by activating a hydroxyl nucleophile present in both classes of lipid. The most medically relevant substrates are thought to be sphingomyelin and/or lysophosphatidylcholine. To better understand the substrate preference of these toxins, we used (31)P NMR to compare the activity of three related but phylogenetically diverse sicariid toxins against a diverse panel of sphingolipid and lysolipid substrates. Two of the three showed significantly faster turnover of sphingolipids over lysolipids, and all three showed a strong preference for positively charged (choline and/or ethanolamine) over neutral (glycerol and serine) headgroups. Strikingly, however, the enzymes vary widely in their preference for choline, the headgroup of both sphingomyelin and lysophosphatidylcholine, versus ethanolamine. An enzyme from Sicarius terrosus showed a strong preference for ethanolamine over choline, whereas two paralogous enzymes from Loxosceles arizonica either preferred choline or showed no significant preference. Intrigued by the novel substrate preference of the Sicarius enzyme, we solved its crystal structure at 2.1 Å resolution. The evolution of variable substrate specificity may help explain the reduced dermonecrotic potential of some natural toxin variants, because mammalian sphingolipids use primarily choline as a positively charged headgroup; it may also be relevant for sicariid predatory behavior, because ethanolamine-containing sphingolipids are common in insect prey.


Asunto(s)
Proteínas de Artrópodos/química , Fosfolipasa D/química , Venenos de Araña/química , Arañas/enzimología , Animales , Proteínas de Artrópodos/metabolismo , Cristalografía por Rayos X , Lípidos , Resonancia Magnética Nuclear Biomolecular , Fosfolipasa D/metabolismo , Venenos de Araña/metabolismo , Especificidad por Sustrato/fisiología
16.
J Venom Res ; 5: 33-47, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25400903

RESUMEN

Spider venoms are complex cocktails rich in peptides, proteins and organic molecules that collectively act to immobilize prey. Venoms of the primitive hunting spider, Plectreurys tristis, have numerous neurotoxic peptides called "plectoxins" (PLTX), a unique acylpolyamine called bis(agmatine)oxalamide, and larger unidentified protein components. These spiders also have unconventional multi-lobed venom glands. Inspired by these unusual characteristics and their phylogenetic position as Haplogynes, we have partially characterized the venome of P. tristis using combined transcriptomic and proteomic methods. With these analyses we found known venom neurotoxins U1-PLTX-Pt1a, U3-PLTX-Pt1a, and we discovered new groups of potential neurotoxins, expanding the U1- and ω-PLTX families and adding U4-through U9-PLTX as six new groups. The venom also contains proteins that are homologs of astacin metalloproteases that, combined with venom peptides, make up 94% of components detected in crude venom, while the remaining 6% is a single undescribed protein with unknown function. Other proteins detected in the transcriptome were found to be members of conserved gene families and make up 20% of the transcripts. These include cDNA sequences that match venom proteins from Mesobuthus and Hottentotta scorpions, Loxosceles and Dysdera spiders, and also salivary and secreted peptide sequences from Ixodes, Amblyomma and Rhipicephalus ticks. Finally, we show that crude venom has neurotoxic effects and an effective paralytic dose on crickets of 3.3µg/gm.

17.
J Proteome Res ; 13(2): 817-35, 2014 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-24303891

RESUMEN

Spiders from the family Scytodidae have a unique prey capturing technique: they spit a zig-zagged silken glue to tether prey to a surface. Effectiveness of this sticky mixture is based on a combination of contraction and adhesion, trapping prey until the spider immobilizes it by envenomation and then feeds. We identify components expressed in Scytodes thoracica venom glands using combined transcriptomic and proteomic analyses. These include homologues of toxic proteins astacin metalloproteases and potentially toxic proteins including venom allergen, longistatin, and translationally controlled tumor protein (TCTP). We classify 19 distinct groups of candidate peptide toxins; 13 of these were detected in the venom, making up 35% of the proteome. Six have significant similarity to toxins from spider species spanning mygalomorph and nonhaplogyne araneomorph lineages, suggesting their expression in venom is phylogenetically widespread. Twelve peptide toxin groups have homologues in venom gland transcriptomes of other haplogynes. Of the transcripts, approximately 50% encode glycine-rich peptides that may contribute to sticky fibers in Scytodes spit. Fifty-one percent of the identified venom proteome is a family of proteins that is homologous to sequences from Drosophila sp. and Latrodectus hesperus with uncharacterized function. Characterization of these components holds promise for discovering new functional activity.


Asunto(s)
Saliva/metabolismo , Venenos de Araña/metabolismo , Secuencia de Aminoácidos , Animales , Datos de Secuencia Molecular , Filogenia , Conducta Predatoria , Homología de Secuencia de Aminoácido , Venenos de Araña/clasificación , Arañas
18.
PLoS One ; 8(8): e72372, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24009677

RESUMEN

Venoms of brown spiders in the genus Loxosceles contain phospholipase D enzyme toxins that can cause severe dermonecrosis and even death in humans. These toxins cleave the substrates sphingomyelin and lysophosphatidylcholine in mammalian tissues, releasing the choline head group. The other products of substrate cleavage have previously been reported to be monoester phospholipids, which would result from substrate hydrolysis. Using (31)P NMR and mass spectrometry we demonstrate that recombinant toxins, as well as whole venoms from diverse Loxosceles species, exclusively catalyze transphosphatidylation rather than hydrolysis, forming cyclic phosphate products from both major substrates. Cyclic phosphates have vastly different biological properties from their monoester counterparts, and they may be relevant to the pathology of brown spider envenomation.


Asunto(s)
Lisofosfatidilcolinas/química , Fosfatos/química , Fosfolipasa D/química , Esfingomielinas/química , Venenos de Araña/química , Animales , Araña Reclusa Parda/química , Espectrometría de Masas , Fosfolipasa D/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Especificidad por Sustrato
19.
PLoS One ; 8(1): e54401, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23342149

RESUMEN

We present solution-state NMR structures for two putative venom peptides from Sicarius dolichocephalus. These peptides were identified from cDNA libraries created from venom gland mRNA and then recombinantly expressed. They are the first structures from any species of Sicarius spiders, and the first peptide structures for any haplogyne spiders. These peptides are homologous to one another, and while they have at most only 20% sequence identity with known venom peptides their structures follow the inhibitor cystine knot motif that has been found in a broad range of venom peptides.


Asunto(s)
Péptidos/química , Venenos de Araña/química , Animales , Espectroscopía de Resonancia Magnética , Arañas
20.
Toxicon ; 60(3): 265-71, 2012 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-22561243

RESUMEN

Spider venoms have evolved over hundreds of millions of years with a primary role of immobilizing prey. Sphingomyelinase D (SMase D) and homologs in the SicTox gene family are the most abundantly expressed toxic protein in venoms of Loxosceles and Sicarius spiders (Sicariidae). While SMase D is well known to cause dermonecrotic lesions in mammals, little work has investigated the bioactivity of this enzyme in its presumed natural role of immobilizing insect prey. We expressed and purified recombinant SMase D from Loxosceles arizonica (Laz-SMase D) and compared its enzymatic and insecticidal activity to that of crude venom. SMase D enzymatic activities of purified protein and crude venom from the same species were indistinguishable. In addition, SMase D and crude venom have comparable and high potency in immobilization assays on crickets. These data indicate that SMase D is a potent insecticidal toxin, the role for which it presumably evolved.


Asunto(s)
Proteínas de Artrópodos/farmacología , Hidrolasas Diéster Fosfóricas/farmacología , Venenos de Araña/enzimología , Arañas/enzimología , Animales , Proteínas de Artrópodos/genética , Proteínas de Artrópodos/aislamiento & purificación , Proteínas de Artrópodos/metabolismo , Conducta Animal , Conducta Alimentaria , Gryllidae , Inmovilización , Insecticidas , Dosificación Letal Mediana , Hidrolasas Diéster Fosfóricas/genética , Hidrolasas Diéster Fosfóricas/aislamiento & purificación , Hidrolasas Diéster Fosfóricas/metabolismo , Proteínas Recombinantes/aislamiento & purificación , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/farmacología , Especificidad de la Especie , Esfingomielinas/metabolismo , Venenos de Araña/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...