Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Environ Technol ; : 1-10, 2021 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-34499019

RESUMEN

Iron and titanium doped γ-Al2O3 (γ-Fe-Ti-Al2O3) mesoporous catalysts were synthesized by evaporation-induced self-assembly using glucose as template, and applied to ozonation of ibuprofen in bromide-containing water. X-ray diffraction (XRD), nitrogen adsorption-desorption (BET), X-ray photoelectron spectroscopy (XPS) results showed that iron and titanium successfully doped into the skeleton of γ-Al2O3, uniform distribution, maintain the ordered mesoporous structure of γ-Al2O3, with larger specific surface area. The valence of titanium coexists with Ti4+ and Ti3+, and the valence of iron was Fe3+. Infrared spectra of chemisorbed pyridine (Py-FTIR) results showed that the doped titanium and iron into the framework position of γ-Al2O3 altered the surface acidity of the alumina surface, especially increasing the medium Lewis acid sites, which was conducive to the effective decomposition of ozone into active oxygen species. The γ-Fe-Ti-Al2O3 catalyst (Al/Fe = 25, Al/Ti = 75) enhanced the removal rate of ibuprofen in ozonation of bromide-containing water, and effectively blocked the formation of bromate. After the reaction of 60 min, the removal rate of TOC was increased from 54% of γ-Al2O3/O3 to 86% with γ-Fe-Ti-Al2O3/O3, while the ozonation alone was only 13%. Electron Paramagnetic Resonance (EPR) spectra showed that hydroxyl and superoxide radicals were reactive oxygen species, which was beneficial to the mineralization of organic matter. The capture experiment of Fe2+ ion confirmed that the electronic cycle of Fe2+ ion and Fe3+ ion was beneficial to block the formation of bromated. The addition of ibuprofen and humic acid can enhance the reduction of Fe3+ in the catalytic ozonation of γ-Fe-Ti-Al2O3, which further strengthened the blocking of bromate formation.

2.
Sci Rep ; 9(1): 14752, 2019 10 14.
Artículo en Inglés | MEDLINE | ID: mdl-31611622

RESUMEN

A transformation process of ozone on different iron oxides suspensions, including α-Fe2O3, α-FeOOH, Fe3O4, was carried out using FTIR of adsorbed pyridine, ATR-FTIR and electron paramagnetic resonance (EPR) spectra with isotope 18O3. It was verified that on the surface isolated hydroxyl groups and the surface hydroxyl groups without acid sites of these iron oxides, ozone was electrostatically adsorbed and did not interact with the surface of these oxides, stably existed as ozone molecule. In contrast, ozone could replace the surface hydroxyl groups on Lewis acid sites of oxides, and directly interacted with the surface metal ions, decomposing into reactive oxygen species (ROS) and initiating the surface metal redox. The results indicate that Lewis acid sites were active center while the electronic cycle of the Fe2+/Fe3+ is advantageous to promote ozone decomposition into O2•- and •OH radicals. The mechanism of catalytic ozonation in different surface acid sites of iron oxides aqueous suspension was proposed on the basis of all experimental information.

3.
Environ Sci Technol ; 49(3): 1690-7, 2015 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-25564945

RESUMEN

Fe2O3 and/or Al2O3 were supported on mesoporous SBA-15 by wet impregnation and calcinations with AlCl3 and FeCl3 as the metal precursor and were characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and Fourier transform infrared spectra (FTIR) of adsorbed pyridine. Fe2O3/Al2O3@SBA-15 was found to be highly effective for the mineralization of ibuprofen aqueous solution with ozone. The characterization studies showed that Al-O-Si was formed by the substitution of Al(3+) for the hydrogen of surface Si-OH groups, not only resulting in high dispersion of Al2O3 and Fe2O3 on SBA-15, but also inducing the greatest amount of surface Lewis acid sites. By studies of in situ attenuated total reflection FTIR (ATR-FTIR), in situ Raman, and electron spin resonance (ESR) spectra, the chemisorbed ozone was decomposed into surface atomic oxygen species at the Lewis acid sites of Al(3+) while it was converted into surface adsorbed (•)OHads and O2(•-) radicals at the Lewis acid sites of Fe(3+). The combination of both Lewis acid sites of iron and aluminum onto Fe2O3/Al2O3@SBA-15 enhanced the formation of (•)OHads and O2(•-) radicals, leading to highest reactivity. Mechanisms of catalytic ozonation were proposed for the tested catalysts on the basis of all the experimental information.


Asunto(s)
Ibuprofeno/química , Ozono/química , Adsorción , Óxido de Aluminio/química , Catálisis , Espectroscopía de Resonancia por Spin del Electrón , Compuestos Férricos/química , Oxígeno/química , Espectroscopía de Fotoelectrones , Dióxido de Silicio/química , Espectroscopía Infrarroja por Transformada de Fourier , Suspensiones , Agua/química , Difracción de Rayos X
4.
J Hazard Mater ; 286: 276-84, 2015 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-25590821

RESUMEN

Comparative experiments were conducted to investigate the catalytic ability of MnO(x)/SBA-15 for the ozonation of clofibric acid (CA) and its reaction mechanism. Compared with ozonation alone, the degradation of CA was barely enhanced, while the removal of TOC was significantly improved by catalytic ozonation (O3/MnO(x)/SBA-15). Adsorption of CA and its intermediates by MnO(x)/SBA-15 was proved unimportant in O3/MnO(x)/SBA-15 due to the insignificant adsorption of CA and little TOC variation after ceasing ozone in stopped-flow experiment. The more remarkably inhibition effect of sodium bisulfite (NaHSO3) on the removal of TOC in catalytic ozonation than in ozonation alone elucidated that MnO(x)/SBA-15 facilitated the generation of hydroxyl radicals (OH), which was further verified by electron spin-resonance spectroscopy (ESR). Highly dispersed MnO(x) on SBA-15 were believed to be the main active component in MnO(x)/SBA-15. Some intermediates were indentified and different degradation routes of CA were proposed in both ozonation alone and catalytic ozonation. The amounts of small molecular carboxylic acids (i.e., formic acid (FA), acetic acid (AA) and oxalic acid (OA)) generated in catalytic ozonation were lower than in ozonation alone, resulting from the generation of more OH.


Asunto(s)
Ácido Clofíbrico/análisis , Compuestos de Manganeso/química , Óxidos/química , Ozono/química , Dióxido de Silicio/química , Contaminantes Químicos del Agua/análisis , Purificación del Agua/métodos , Adsorción , Catálisis , Ácido Clofíbrico/química , Contaminantes Químicos del Agua/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...