Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Appl Opt ; 61(6): C73-C79, 2022 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-35201000

RESUMEN

Tri-structural isotropic (TRISO) fuel particles are a key component of next generation nuclear fuels. Using x-ray computed tomography (CT) to characterize TRISO particles is challenging because of the strong attenuation of the x-ray beam by the uranium core, leading to severe photon starvation in a substantial fraction of the measurements. Furthermore, the overall acquisition time for a high-resolution CT scan can be very long when using conventional laboratory-based x-ray systems and reconstruction algorithms. Specifically, when analytic methods such as the Feldkamp-Davis-Kress (FDK) algorithm are used for reconstruction, it results in severe streak artifacts and noise in the corresponding 3D volume, which makes subsequent analysis of the particles challenging. In this paper, we develop and apply model-based image reconstruction (MBIR) algorithms to improve the quality of CT reconstructions for TRISO particles to facilitate better characterization. We demonstrate that the proposed MBIR algorithms can significantly suppress artifacts with minimal pre-processing compared to conventional approaches. We also demonstrate that the proposed MBIR approach can obtain high-quality reconstruction compared to the FDK approach even when using a fraction of the typically acquired measurements, thereby enabling dramatically faster measurement times for TRISO particles.

2.
ACS Omega ; 6(48): 32618-32630, 2021 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-34901610

RESUMEN

Models of fluid flow are used to improve the efficiency of oil and gas extraction and to estimate the storage and leakage of carbon dioxide in geologic reservoirs. Therefore, a quantitative understanding of key parameters of rock-fluid interactions, such as contact angles, wetting, and the rate of spontaneous imbibition, is necessary if these models are to predict reservoir behavior accurately. In this study, aqueous fluid imbibition rates were measured in fractures in samples of the Eagle Ford Shale using neutron imaging. Several liquids, including pure water and aqueous solutions containing sodium bicarbonate and sodium chloride, were used to determine the impact of solution chemistry on uptake rates. Uptake rate analysis provided dynamic contact angles for the Eagle Ford Shale that ranged from 51 to 90° using the Schwiebert-Leong equation, suggesting moderately hydrophilic mineralogy. When corrected for hydrostatic pressure, the average contact angle was calculated as 76 ± 7°, with higher values at the fracture inlet. Differences in imbibition arising from differing fracture widths, physical liquid properties, and wetting front height were investigated. For example, bicarbonate-contacted samples had average contact angles that varied between 62 ± 10° and ∼84 ± 6° as the fluid rose in the column, likely reflecting a convergence-divergence structure within the fracture. Secondary imbibitions into the same samples showed a much more rapid uptake for water and sodium chloride solutions that suggested alteration of the clay in contact with the solution producing a water-wet environment. The same effect was not observed for sodium bicarbonate, which suggested that the bicarbonate ion prevented shale hydration. This study demonstrates how the imbibition rate measured by neutron imaging can be used to determine contact angles for solutions in contact with shale or other materials and that wetting properties can vary on a relatively fine scale during imbibition, requiring detailed descriptions of wetting for accurate reservoir modeling.

3.
J Imaging ; 7(1)2021 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-34460581

RESUMEN

Wavelength-resolved neutron tomography (WRNT) is an emerging technique for characterizing samples relevant to the materials sciences in 3D. WRNT studies can be carried out at beam lines in spallation neutron or reactor-based user facilities. Because of the limited availability of experimental time, potential imperfections in the neutron source, or constraints placed on the acquisition time by the type of sample, the data can be extremely noisy resulting in tomographic reconstructions with significant artifacts when standard reconstruction algorithms are used. Furthermore, making a full tomographic measurement even with a low signal-to-noise ratio can take several days, resulting in a long wait time before the user can receive feedback from the experiment when traditional acquisition protocols are used. In this paper, we propose an interlaced scanning technique and combine it with a model-based image reconstruction algorithm to produce high-quality WRNT reconstructions concurrent with the measurements being made. The interlaced scan is designed to acquire data so that successive measurements are more diverse in contrast to typical sequential scanning protocols. The model-based reconstruction algorithm combines a data-fidelity term with a regularization term to formulate the wavelength-resolved reconstruction as minimizing a high-dimensional cost-function. Using an experimental dataset of a magnetite sample acquired over a span of about two days, we demonstrate that our technique can produce high-quality reconstructions even during the experiment compared to traditional acquisition and reconstruction techniques. In summary, the combination of the proposed acquisition strategy with an advanced reconstruction algorithm provides a novel guideline for designing WRNT systems at user facilities.

4.
Opt Express ; 16(13): 9753-64, 2008 Jun 23.
Artículo en Inglés | MEDLINE | ID: mdl-18575544

RESUMEN

Three-wavelength digital holography is applied to obtain surface height measurements over several microns of range, while simultaneously maintaining the low noise precision of the single wavelength phase measurement. The precision is preserved by the use of intermediate synthetic wavelength steps generated from the three wavelengths and the use of hierarchical optical phase unwrapping. As the complex wave-front of each wavelength can be captured simultaneously in one digital image, real-time performance is achievable.


Asunto(s)
Algoritmos , Holografía/métodos , Aumento de la Imagen/métodos , Interpretación de Imagen Asistida por Computador/métodos , Procesamiento de Señales Asistido por Computador
5.
Appl Opt ; 46(6): 827-33, 2007 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-17279126

RESUMEN

We present a computational method to increase the effective NA of a holographic microscopy system operating in air. Our optical system employs a reflection Mach-Zender architecture and computational reconstruction of the full complex (phase and amplitude) wavefront. Based on fundamental diffraction principles, different angles of incident illumination result in different diffracted orders of the object wave being imaged. We record, store, and computationally recombine these object waves to expand the spatial frequency response. Experimental results demonstrate an improvement in the effective NA of our system from 0.59 to 0.78.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...