Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Autophagy ; : 1-19, 2023 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-37881948

RESUMEN

In neurons, autophagosome biogenesis occurs mainly in distal axons, followed by maturation during retrograde transport. Autophagosomal growth depends on the supply of membrane lipids which requires small vesicles containing ATG9, a lipid scramblase essential for macroautophagy/autophagy. Here, we show that ATG9-containing vesicles are enriched in synapses and resemble synaptic vesicles in size and density. The proteome of ATG9-containing vesicles immuno-isolated from nerve terminals showed conspicuously low levels of trafficking proteins except of the AP2-complex and some enzymes involved in endosomal phosphatidylinositol metabolism. Super resolution microscopy of nerve terminals and isolated vesicles revealed that ATG9-containing vesicles represent a distinct vesicle population with limited overlap not only with synaptic vesicles but also other membranes of the secretory pathway, uncovering a surprising heterogeneity in their membrane composition. Our results are compatible with the view that ATG9-containing vesicles function as lipid shuttles that scavenge membrane lipids from various intracellular membranes to support autophagosome biogenesis.Abbreviations: AP: adaptor related protein complex: ATG2: autophagy related 2; ATG9: autophagy related 9; DNA PAINT: DNA-based point accumulation for imaging in nanoscale topography; DyMIN STED: dynamic minimum stimulated emission depletion; EL: endosome and lysosome; ER: endoplasmic reticulum; GA: Golgi apparatus; iBAQ: intensity based absolute quantification; LAMP: lysosomal-associated membrane protein; M6PR: mannose-6-phosphate receptor, cation dependent; Minflux: minimal photon fluxes; Mito: mitochondria; MS: mass spectrometry; PAS: phagophore assembly site; PM: plasma membrane; Px: peroxisome; RAB26: RAB26, member RAS oncogene family; RAB3A: RAB3A, member RAS oncogene family; RAB5A: RAB5A, member RAS oncogene family; SNARE: soluble N-ethylmaleimide-sensitive-factor attachment receptor; SVs: synaptic vesicles; SYP: synaptophysin; TGN: trans-Golgi network; TRAPP: transport protein particle; VTI1: vesicle transport through interaction with t-SNAREs.

2.
Cell Rep ; 41(2): 111467, 2022 10 11.
Artículo en Inglés | MEDLINE | ID: mdl-36223745

RESUMEN

In all domains of life, mechanisms exist that adjust translational capacity to nutrient restriction and other growth constraints. The mammalian target of rapamycin (mTOR) regulates the synthesis of ribosomal proteins and translation factors in mammalian cells via phosphorylation of the La-related protein 1 (LARP1). In the present model of starvation-induced translational silencing, LARP1 targets mRNAs carrying a 5' terminal oligopyrimidine (5'TOP) motif to shift these into subpolysomal ribonucleoprotein particles. However, how these mRNAs would be protected from degradation and rapidly made available to restore translation capacity when needed remained enigmatic. Here, to address this, we employ gradient profiling by sequencing (Grad-seq) and monosome footprinting. Challenging the above model, we find that 5'TOP mRNAs, instead of being translationally silenced during starvation, undergo low baseline translation with reduced initiation rates. This mode of regulation ensures a stable 5'TOP mRNA population under starvation and allows fast reversibility of the translational repression.


Asunto(s)
Biosíntesis de Proteínas , Serina-Treonina Quinasas TOR , ARN Mensajero/genética , ARN Mensajero/metabolismo , Ribonucleoproteínas/metabolismo , Proteínas Ribosómicas/metabolismo , Serina-Treonina Quinasas TOR/metabolismo
3.
Arch Biochem Biophys ; 709: 108966, 2021 09 30.
Artículo en Inglés | MEDLINE | ID: mdl-34139199

RESUMEN

Chemical neurotransmission is the major mechanism of neuronal communication. Neurotransmitters are released from secretory organelles, the synaptic vesicles (SVs) via exocytosis into the synaptic cleft. Fusion of SVs with the presynaptic plasma membrane is balanced by endocytosis, thus maintaining the presynaptic membrane at steady-state levels. The protein machineries responsible for exo- and endocytosis have been extensively investigated. In contrast, less is known about the role of lipids in synaptic transmission and how the lipid composition of SVs is affected by dynamic exo-endocytotic cycling. Here we summarize the current knowledge about the composition, organization, and function of SV membrane lipids. We also cover lipid biogenesis and maintenance during the synaptic vesicle cycle.


Asunto(s)
Membranas Sinápticas/química , Vesículas Sinápticas/química , Animales , Endocitosis/fisiología , Exocitosis/fisiología , Humanos , Lípidos de la Membrana/química , Lípidos de la Membrana/metabolismo , Membranas Sinápticas/metabolismo , Vesículas Sinápticas/metabolismo
4.
Sci Rep ; 10(1): 12956, 2020 07 31.
Artículo en Inglés | MEDLINE | ID: mdl-32737358

RESUMEN

The Atg12-Atg5/Atg16L1 complex is recruited by WIPI2b to the site of autophagosome formation. Atg16L1 is an effector of the Golgi resident GTPase Rab33B. Here we identified a minimal stable complex of murine Rab33B(30-202) Q92L and Atg16L1(153-210). Atg16L1(153-210) comprises the C-terminal part of the Atg16L1 coiled-coil domain. We have determined the crystal structure of the Rab33B Q92L/Atg16L1(153-210) effector complex at 3.47 Å resolution. This structure reveals that two Rab33B molecules bind to the diverging α-helices of the dimeric Atg16L1 coiled-coil domain. We mutated Atg16L1 and Rab33B interface residues and found that they disrupt complex formation in pull-down assays and cellular co-localization studies. The Rab33B binding site of Atg16L1 comprises 20 residues and immediately precedes the WIPI2b binding site. Rab33B mutations that abolish Atg16L binding also abrogate Rab33B association with the Golgi stacks. Atg16L1 mutants that are defective in Rab33B binding still co-localize with WIPI2b in vivo. The close proximity of the Rab33B and WIPI2b binding sites might facilitate the recruitment of Rab33B containing vesicles to provide a source of lipids during autophagosome biogenesis.


Asunto(s)
Proteínas Relacionadas con la Autofagia/química , Complejos Multiproteicos/química , Proteínas de Unión al GTP rab/química , Animales , Proteínas Relacionadas con la Autofagia/genética , Sitios de Unión , Cristalografía por Rayos X , Ratones , Complejos Multiproteicos/genética , Mutación , Estructura Cuaternaria de Proteína , Proteínas de Unión al GTP rab/genética
5.
Nat Commun ; 8(1): 678, 2017 10 30.
Artículo en Inglés | MEDLINE | ID: mdl-29084947

RESUMEN

Autophagy-mediated degradation of synaptic components maintains synaptic homeostasis but also constitutes a mechanism of neurodegeneration. It is unclear how autophagy of synaptic vesicles and components of presynaptic active zones is regulated. Here, we show that Pleckstrin homology containing family member 5 (Plekhg5) modulates autophagy of synaptic vesicles in axon terminals of motoneurons via its function as a guanine exchange factor for Rab26, a small GTPase that specifically directs synaptic vesicles to preautophagosomal structures. Plekhg5 gene inactivation in mice results in a late-onset motoneuron disease, characterized by degeneration of axon terminals. Plekhg5-depleted cultured motoneurons show defective axon growth and impaired autophagy of synaptic vesicles, which can be rescued by constitutively active Rab26. These findings define a mechanism for regulating autophagy in neurons that specifically targets synaptic vesicles. Disruption of this mechanism may contribute to the pathophysiology of several forms of motoneuron disease.


Asunto(s)
Autofagia/genética , Factores de Intercambio de Guanina Nucleótido/genética , Enfermedad de la Neurona Motora/genética , Vesículas Sinápticas/metabolismo , Animales , Línea Celular , Células Cultivadas , Factores de Intercambio de Guanina Nucleótido/metabolismo , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Microscopía Electrónica de Transmisión , Enfermedad de la Neurona Motora/metabolismo , Neuronas Motoras/metabolismo , Terminales Presinápticos/metabolismo , Vesículas Sinápticas/ultraestructura , Proteínas de Unión al GTP rab/genética , Proteínas de Unión al GTP rab/metabolismo
6.
Cells ; 5(1)2016 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-26861397

RESUMEN

Presynaptic neurotransmitter release is dominated by the synaptic vesicle (SV) cycle and entails the biogenesis, fusion, recycling, reformation or turnover of synaptic vesicles-a process involving bulk movement of membrane and proteins. As key mediators of membrane trafficking, small GTPases from the Rab family of proteins play critical roles in this process by acting as molecular switches that dynamically interact with and regulate the functions of different sets of macromolecular complexes involved in each stage of the cycle. Importantly, mutations affecting Rabs, and their regulators or effectors have now been identified that are implicated in severe neurological and neurodevelopmental disorders. Here, we summarize the roles and functions of presynaptic Rabs and discuss their involvement in the regulation of presynaptic function.

7.
Elife ; 4: e05597, 2015 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-25643395

RESUMEN

Small GTPases of the Rab family not only regulate target recognition in membrane traffic but also control other cellular functions such as cytoskeletal transport and autophagy. Here we show that Rab26 is specifically associated with clusters of synaptic vesicles in neurites. Overexpression of active but not of GDP-preferring Rab26 enhances vesicle clustering, which is particularly conspicuous for the EGFP-tagged variant, resulting in a massive accumulation of synaptic vesicles in neuronal somata without altering the distribution of other organelles. Both endogenous and induced clusters co-localize with autophagy-related proteins such as Atg16L1, LC3B and Rab33B but not with other organelles. Furthermore, Atg16L1 appears to be a direct effector of Rab26 and binds Rab26 in its GTP-bound form, albeit only with low affinity. We propose that Rab26 selectively directs synaptic and secretory vesicles into preautophagosomal structures, suggesting the presence of a novel pathway for degradation of synaptic vesicles.


Asunto(s)
Autofagia , Vesículas Sinápticas/metabolismo , Proteínas de Unión al GTP rab/metabolismo , Animales , Cuerpo Celular/metabolismo , Compartimento Celular , Células Cultivadas , Femenino , Proteínas Fluorescentes Verdes/metabolismo , Inhibidores de Disociación de Guanina Nucleótido/metabolismo , Guanosina Difosfato/metabolismo , Guanosina Trifosfato/metabolismo , Hipocampo/citología , Humanos , Ratones Endogámicos BALB C , Proteínas Mutantes/metabolismo , Unión Neuromuscular/metabolismo , Unión Neuromuscular/ultraestructura , Neuronas/citología , Neuronas/metabolismo , Neuronas/ultraestructura , Fagosomas/metabolismo , Ratas , Proteínas de Transporte Vesicular/metabolismo
8.
PLoS One ; 8(10): e76355, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24098481

RESUMEN

The short coiled coil protein (SCOC) forms a complex with fasciculation and elongation protein zeta 1 (FEZ1). This complex is involved in autophagy regulation. We determined the crystal structure of the coiled coil domain of human SCOC at 2.7 Å resolution. SCOC forms a parallel left handed coiled coil dimer. We observed two distinct dimers in the crystal structure, which shows that SCOC is conformationally flexible. This plasticity is due to the high incidence of polar and charged residues at the core a/d-heptad positions. We prepared two double mutants, where these core residues were mutated to either leucines or valines (E93V/K97L and N125L/N132V). These mutations led to a dramatic increase in stability and change of oligomerisation state. The oligomerisation state of the mutants was characterized by multi-angle laser light scattering and native mass spectrometry measurements. The E93V/K97 mutant forms a trimer and the N125L/N132V mutant is a tetramer. We further demonstrate that SCOC forms a stable homogeneous complex with the coiled coil domain of FEZ1. SCOC dimerization and the SCOC surface residue R117 are important for this interaction.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/química , Proteínas Portadoras/química , Proteínas de la Membrana/química , Proteínas del Tejido Nervioso/química , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Secuencia de Aminoácidos , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Línea Celular , Cristalografía por Rayos X , Humanos , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Modelos Moleculares , Datos de Secuencia Molecular , Mutación , Proteínas del Tejido Nervioso/metabolismo , Unión Proteica , Conformación Proteica , Dominios y Motivos de Interacción de Proteínas , Transporte de Proteínas , Alineación de Secuencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...