Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Nanomedicine (Lond) ; 13(14): 1731-1751, 2018 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-30074435

RESUMEN

Aim: Polyether pores were designed and tetracycline-loaded mesoporous silica materials, with their surface decorated by silver ions, were prepared, with the aim of reaching high antibacterial activity. Meanwhile, mammalian cell cytotoxicity and hemolytic effects were not observed using material concentrations tenfold the ones optimized for the bactericidal tests. Methods: Pore size was tuned by changing the polyether content and the surface was covalently decorated with silver thiolate groups. Results: We showed that the biological activity was enhanced by modulating silver ions and tetracycline releases by tuning silver thiolate group concentration on the silica surface and/or by modulating the pH of the environment. Conclusion: The combined use of tetracycline and silver ions with the mesoporous drug-delivery carrier was a very effective strategy against susceptible and tetracycline-resistant Escherichia coli bacteria.

2.
Dalton Trans ; 42(5): 1591-602, 2013 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-23138359

RESUMEN

The co-condensation of functional alkoxysilanes with tetraethoxysilane in the presence of a structure directing agent under sol-gel process chemistry is a common way to access functional organosilica with an ordered mesostructure. In this report, bulky silylated fatty acid methyl esters were used both as co-templating bio-molecules and functionalizing agents in the process of supra-molecular silica mineralization. The highest structural regularity in terms of pore size distribution and channel size homogeneity was observed for carboxy-tethered silica possessing SBA-15-type architecture due to an enhanced fatty acid precursor-surfactant interaction. The carboxylic surface embedded within the hydrophobic environment of the fatty compounds confers to these materials interesting reactive-surface properties with promising applications as drug-delivery systems and bio-catalytic nanoreactors.

3.
J Am Chem Soc ; 131(8): 2882-92, 2009 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-19193105

RESUMEN

We report the synthesis of a new trialkoxysilylated ionic liquid based on disilylated guanidinium and monosilylated sulfonimide species. This compound allowed the successful preparation of new periodic mesoporous organosilicas containing covalently anchored ion-pair through both organo-cationic and organo-anionic moieties which have never been reported up to now. Two classes of hybrid materials containing guanidinium-sulfonimide ion-pairs (IPs) have been synthesized. The first type of material was prepared by grafting the silylated IP onto both MCM-41-type and SBA-15-type silicas according to a surface sol-gel polymerization. The second class was synthesized following a one-pot sol-gel procedure using silylated IP and tetraethoxysilane as framework precursors. These latter materials correspond to so-called periodic mesoporous organosilicas (PMOs) and gave "organo-ionically" modified MCM-41 and SBA-15 related solids. The materials were characterized by a series of techniques including XRD, nitrogen sorption, solid-state NMR, FTIR, transmission electronic microscopy, and elemental analysis. The highest structural regularity in terms of pore size distribution and channel size homogeneity was observed for IP-PMOs possessing SBA-15-type architecture due to an enhanced trialkoxysilylated IP precursor/surfactant interaction. Solvatochromic experiments with Reichardt's dye showed good accessibility of the silica-supported ion-pair and suggested the formation of monophasic materials.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA