Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Comp Physiol B ; 193(4): 413-424, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37145369

RESUMEN

While oxygen is essential for oxidative phosphorylation, O2 can form reactive species (ROS) when interacting with electrons of mitochondrial electron transport system. ROS is dependent on O2 pressure (PO2) and has traditionally been assessed in O2 saturated media, PO2 at which mitochondria do not typically function in vivo. Mitochondrial ROS can be significantly elevated by the respiratory complex II substrate succinate, which can accumulate within hypoxic tissues, and this is exacerbated further with reoxygenation. Intertidal species are repetitively exposed to extreme O2 fluctuations, and have likely evolved strategies to avoid excess ROS production. We evaluated mitochondrial electron leakage and ROS production in permeabilized brain of intertidal and subtidal triplefin fish species from hyperoxia to anoxia, and assessed the effect of anoxia reoxygenation and the influence of increasing succinate concentrations. At typical intracellular PO2, net ROS production was similar among all species; however at elevated PO2, brain tissues of the intertidal triplefin fish released less ROS than subtidal species. In addition, following in vitro anoxia reoxygenation, electron transfer mediated by succinate titration was better directed to respiration, and not to ROS production for intertidal species. Overall, these data indicate that intertidal triplefin fish species better manage electrons within the ETS, from hypoxic-hyperoxic transitions.


Asunto(s)
Electrones , Mitocondrias , Animales , Especies Reactivas de Oxígeno/metabolismo , Transporte de Electrón , Mitocondrias/metabolismo , Oxígeno/metabolismo , Peces , Hipoxia/metabolismo , Encéfalo , Succinatos/metabolismo , Succinatos/farmacología
2.
J Biol Chem ; 298(7): 102112, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35690148

RESUMEN

Plasmin is a broad-spectrum protease and therefore needs to be tightly regulated. Active plasmin is formed from plasminogen, which is found in high concentrations in the blood and is converted by the plasminogen activators. In the circulation, high levels of α2-antiplasmin rapidly and efficiently inhibit plasmin activity. Certain myeloid immune cells have been shown to bind plasmin and plasminogen on their cell surface via proteins that bind to the plasmin(ogen) kringle domains. Our earlier work showed that T cells can activate plasmin but that they do not themselves express plasminogen. Here, we demonstrate that T cells express several known plasminogen receptors and that they bind plasminogen on their cell surface. We show T cell-bound plasminogen was converted to plasmin by plasminogen activators upon T cell activation. To examine functional consequences of plasmin generation by activated T cells, we investigated its effect on the chemokine, C-C motif chemokine ligand 21 (CCL21). Video microscopy and Western blotting confirmed that plasmin bound by human T cells cleaves CCL21 and increases the chemotactic response of monocyte-derived dendritic cells toward higher CCL21 concentrations along the concentration gradient by increasing their directional migration and track straightness. These results demonstrate how migrating T cells and potentially other activated immune cells may co-opt a powerful proteolytic system from the plasma toward immune processes in the peripheral tissues, where α2-antiplasmin is more likely to be absent. We propose that plasminogen bound to migrating immune cells may strongly modulate chemokine responses in peripheral tissues.


Asunto(s)
Quimiocina CCL21/metabolismo , Células Dendríticas/inmunología , Plasminógeno/metabolismo , Linfocitos T/metabolismo , Antifibrinolíticos , Quimiocinas , Células Dendríticas/metabolismo , Fibrinolisina/metabolismo , Humanos , Ligandos , Activadores Plasminogénicos/metabolismo , alfa 2-Antiplasmina
3.
Front Immunol ; 12: 628090, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33841411

RESUMEN

The ability to study migratory behavior of immune cells is crucial to understanding the dynamic control of the immune system. Migration induced by chemokines is often assumed to be directional (chemotaxis), yet commonly used end-point migration assays are confounded by detecting increased cell migration that lacks directionality (chemokinesis). To distinguish between chemotaxis and chemokinesis we used the classic "under-agarose assay" in combination with video-microscopy to monitor migration of CCR7+ human monocyte-derived dendritic cells and T cells in response to a concentration gradient of CCL19. Formation of the gradients was visualized with a fluorescent marker and lasted several hours. Monocyte-derived dendritic cells migrated chemotactically towards the CCL19 gradient. In contrast, T cells exhibited a biased random walk that was largely driven by increased exploratory chemokinesis towards CCL19. This dominance of chemokinesis over chemotaxis in T cells is consistent with CCR7 ligation optimizing T cell scanning of antigen-presenting cells in lymphoid tissues.


Asunto(s)
Quimiocina CCL19/farmacología , Quimiotaxis de Leucocito/efectos de los fármacos , Células Dendríticas/efectos de los fármacos , Microscopía Fluorescente , Linfocitos T/efectos de los fármacos , Imagen de Lapso de Tiempo , Comunicación Celular , Células Cultivadas , Técnicas de Cocultivo , Células Dendríticas/inmunología , Humanos , Linfocitos T/inmunología , Factores de Tiempo
4.
Immunol Cell Biol ; 99(1): 49-64, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-32740978

RESUMEN

B-cell migration within lymph nodes (LNs) is crucial to adaptive immune responses. Chemotactic gradients are proposed to drive migration of B cells into follicles, followed by their relocation to specific zones of the follicle during activation, and ultimately egress. However, the molecular drivers of these processes and the cells generating chemotactic signals that affect B cells in human LNs are not well understood. We used immunofluorescence microscopy, flow cytometry and functional assays to study molecular mechanisms of B-cell migration within human LNs, and found subtle but important differences to previous murine models. In human LNs we find CXCL13 is prominently expressed at the follicular edge, often associated with fibroblastic reticular cells located in these areas, whereas follicular dendritic cells show minimal contribution to CXCL13 expression. Human B cells rapidly downregulate CXCR5 on encountering CXCL13, but recover CXCR5 expression in the CXCL13-low environment. These data suggest that the CXCL13 gradient in human LNs is likely to be different from that proposed in mice. We also identify CD68+ CD11c+ PU.1+ tingible body macrophages within both primary and secondary follicles as likely drivers of the sphingosine-1-phosphate (S1P) gradient that mediates B-cell egress from LNs, through their expression of the S1P-degrading enzyme, S1P lyase. Based on our findings, we present a model of B-cell migration within human LNs, which has both similarities and interesting differences to that proposed for mice.


Asunto(s)
Quimiocina CXCL13 , Señales (Psicología) , Animales , Linfocitos B , Movimiento Celular , Humanos , Ganglios Linfáticos , Ratones , Receptores CXCR5
5.
J Appl Physiol (1985) ; 130(3): 545-561, 2021 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-33356984

RESUMEN

Little is known about the molecular responses to power resistance exercise that lead to skeletal muscle remodeling and enhanced athletic performance. We assessed the expression of titin-linked putative mechanosensing proteins implicated in muscle remodeling: muscle ankyrin repeat proteins (Ankrd 1, Ankrd 2, and Ankrd 23), muscle-LIM proteins (MLPs), muscle RING-finger protein-1 (MuRF-1), and associated myogenic proteins (MyoD1, myogenin, and myostatin) in skeletal muscle in response to power resistance exercise with or without a postexercise meal, in fed, resistance-trained men. A muscle sample was obtained from the vastus lateralis of seven healthy men on separate days, 3 h after 90 min of rest (Rest) or power resistance exercise with (Ex + Meal) or without (Ex) a postexercise meal to quantify mRNA and protein levels. The levels of phosphorylated HSP27 (pHSP27-Ser15) and cytoskeletal proteins in muscle and creatine kinase activity in serum were also assessed. The exercise increased (P ≤ 0.05) pHSP27-Ser15 (∼6-fold) and creatine kinase (∼50%), whereas cytoskeletal protein levels were unchanged (P > 0.05). Ankrd 1 (∼15-fold) and MLP (∼2-fold) mRNA increased, whereas Ankrd 2, Ankrd 23, MuRF-1, MyoD1, and myostatin mRNA were unchanged. Ankrd 1 (∼3-fold, Ex) and MLPb (∼20-fold, Ex + Meal) protein increased, but MLPa, Ankrd 2, Ankrd 23, and the myogenic proteins were unchanged. The postexercise meal did not affect the responses observed. Power resistance exercise, as performed in practice, induced subtle early responses in the expression of MLP and Ankrd 1 yet had little effect on the other proteins investigated. These findings suggest possible roles for MLP and Ankrd 1 in the remodeling of skeletal muscle in individuals who regularly perform this type of exercise.NEW & NOTEWORTHY This is the first study to assess the early changes in the expression of titin-linked putative mechanosensing proteins and associated myogenic regulatory factors in skeletal muscle after power resistance exercise in fed, resistance-trained men. We report that power resistance exercise induces subtle early responses in the expression of Ankrd 1 and MLP, suggesting these proteins play a role in the remodeling of skeletal muscle in individuals who regularly perform this type of exercise.


Asunto(s)
Entrenamiento de Fuerza , Conectina , Ejercicio Físico , Humanos , Masculino , Músculo Esquelético , Miogenina
6.
J Leukoc Biol ; 107(1): 145-158, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31667914

RESUMEN

T cells play a key role in mounting an adaptive immune response. T cells are activated upon recognition of cognate Ag presented by an APC. Subsequently, T cells adhere to other activated T cells to form activation clusters, which lead to directed secretion of cytokines between communicating cells. T cell activation clusters have been implicated in regulating activation, proliferation, and memory formation in T cells. We previously reported the expression of the protease inhibitor neuroserpin by human T cells and showed that expression and intracellular localization is regulated following T cell activation. To gain a better understanding of neuroserpin in the proteolytic environment postactivation we assessed its role in human T cell clustering and proliferation. Neuroserpin knockdown increased T cell proliferation and cluster formation following T cell activation. This increased cluster formation was dependent on the proteases tissue plasminogen activator (tPA) and plasmin. Furthermore, neuroserpin knockdown or plasmin treatment of T cells increased the cleavage of annexin A2, a known plasmin target that regulates the actin cytoskeleton. Live cell imaging of activated T cells further indicated a role of the actin cytoskeleton in T cell clustering. The inhibition of actin regulators myosin ATPase and Rho-associated protein kinase signaling completely reversed the neuroserpin knockdown-induced effects. The results presented in this study reveal a novel role for neuroserpin and the proteolytic environment in the regulation of T cell activation biology.


Asunto(s)
Comunicación Celular , Proliferación Celular , Activación de Linfocitos , Neuropéptidos/farmacología , Inhibidores de Serina Proteinasa/farmacología , Serpinas/farmacología , Linfocitos T/citología , Activador de Tejido Plasminógeno/antagonistas & inhibidores , Citoesqueleto de Actina/metabolismo , Humanos , Neuropéptidos/antagonistas & inhibidores , Linfocitos T/efectos de los fármacos , Linfocitos T/metabolismo , Neuroserpina
7.
J Biol Chem ; 294(22): 8806-8818, 2019 05 31.
Artículo en Inglés | MEDLINE | ID: mdl-30996005

RESUMEN

Aß1-42 is involved in Alzheimer's disease (AD) pathogenesis and is prone to glycation, an irreversible process where proteins accumulate advanced glycated end products (AGEs). Nϵ-(Carboxyethyl)lysine (CEL) is a common AGE associated with AD patients and occurs at either Lys-16 or Lys-28 of Aß1-42. Methyglyoxal is commonly used for the unspecific glycation of Aß1-42, which results in a complex mixture of AGE-modified peptides and makes interpretation of a causative AGE at a specific amino acid residue difficult. We address this issue by chemically synthesizing defined CEL modifications on Aß1-42 at Lys-16 (Aß-CEL16), Lys-28 (Aß-CEL28), and Lys-16 and -28 (Aß-CEL16&28). We demonstrated that double-CEL glycations at Lys-16 and Lys-28 of Aß1-42 had the most profound impact on the ability to form amyloid fibrils. In silico predictions indicated that Aß-CEL16&28 had a substantial decrease in free energy change, which contributes to fibril destabilization, and a increased aggregation rate. Single-CEL glycations at Lys-28 of Aß1-42 had the least impact on fibril formation, whereas CEL glycations at Lys-16 of Aß1-42 delayed fibril formation. We also tested these peptides for neuronal toxicity and mitochondrial function on a retinoic acid-differentiated SH-SY5Y human neuroblastoma cell line (RA-differentiated SH-SY5Y). Only Aß-CEL16 and Aß-CEL28 were neurotoxic, possibly through a nonmitochondrial pathway, whereas Aß-CEL16&28 showed no neurotoxicity. Interestingly, Aß-CEL16&28 had depolarized the mitochondrial membrane potential, whereas Aß-CEL16 had increased mitochondrial respiration at complex II. These results may indicate mitophagy or an alternate route of metabolism, respectively. Therefore, our results provides insight into potential therapeutic approaches against neurotoxic CEL-glycated Aß1-42.


Asunto(s)
Péptidos beta-Amiloides/metabolismo , Amiloide/metabolismo , Fragmentos de Péptidos/metabolismo , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/patología , Péptidos beta-Amiloides/síntesis química , Péptidos beta-Amiloides/toxicidad , Apoptosis/efectos de los fármacos , Línea Celular Tumoral , Glicosilación , Humanos , Lisina/análogos & derivados , Lisina/metabolismo , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Mitocondrias/metabolismo , Fragmentos de Péptidos/síntesis química , Fragmentos de Péptidos/toxicidad , Agregado de Proteínas , Conformación Proteica en Lámina beta , Estabilidad Proteica , Oxígeno Singlete/metabolismo
8.
Org Biomol Chem ; 17(1): 30-34, 2018 12 19.
Artículo en Inglés | MEDLINE | ID: mdl-30500032

RESUMEN

The amyloidogenic Aß42 peptide was efficiently prepared using a double linker system, markedly improving solubility and chromatographic peak resolution, thus enabling full characterisation using standard techniques. The tag was readily cleaved with sodium hydroxide and removed by aqueous extraction, affording Aß42 in high purity and yield for biophysical characterisation studies.


Asunto(s)
Péptidos beta-Amiloides/síntesis química , Fragmentos de Péptidos/síntesis química , Coloración y Etiquetado/métodos , Cromatografía Líquida de Alta Presión , Humanos , Extracción Líquido-Líquido , Hidróxido de Sodio/química , Solubilidad
9.
Front Physiol ; 9: 1941, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30713504

RESUMEN

The vertebrate brain is generally very sensitive to acidosis, so a hypoxia-induced decrease in pH is likely to have an effect on brain mitochondria (mt). Mitochondrial respiration (JO2) is required to generate an electrical gradient (ΔΨm) and a pH gradient to power ATP synthesis, yet the impact of pH modulation on brain mt function remains largely unexplored. As intertidal fishes within rock pools routinely experience hypoxia and reoxygenation, they would most likely experience changes in cellular pH. We hence compared four New Zealand triplefin fish species ranging from intertidal hypoxia-tolerant species (HTS) to subtidal hypoxia-sensitive species (HSS). We predicted that HTS would tolerate acidosis better than HSS in terms of sustaining mt structure and function. Using respirometers coupled to fluorimeters and pH electrodes, we titrated lactic-acid to decrease the pH of the media, and simultaneously recorded JO2, ΔΨm, and H+ buffering capacities within permeabilized brain and swelling of mt isolated from non-permeabilized brains. We then measured ATP synthesis rates in the most HTS (Bellapiscus medius) and the HSS (Forsterygion varium) at pH 7.25 and 6.65. Mitochondria from HTS brain did have greater H+ buffering capacities than HSS mt (∼10 mU pH.mgprotein -1). HTS mt swelled by 40% when exposed to a decrease of 1.5 pH units, and JO2 was depressed by up to 15% in HTS. However, HTS were able to maintain ΔΨm near -120 mV. Estimates of work, in terms of charges moved across the mt inner-membrane, suggested that with acidosis, HTS mt may in part harness extra-mt H+ to maintain ΔΨm, and could therefore support ATP production. This was confirmed with elevated ATP synthesis rates and enhanced P:O ratios at pH 6.65 relative to pH 7.25. In contrast, mt volumes and ΔΨm decreased downward pH 6.9 in HSS mt and paradoxically, JO2 increased (∼25%) but ATP synthesis and P:O ratios were depressed at pH 6.65. This indicates a loss of coupling in the HSS with acidosis. Overall, the mt of these intertidal fish have adaptations that enhance ATP synthesis efficiency under acidic conditions such as those that occur in hypoxic or reoxygenated brain.

10.
Semin Cell Dev Biol ; 62: 152-159, 2017 02.
Artículo en Inglés | MEDLINE | ID: mdl-27639894

RESUMEN

It is 27 years since neuroserpin was first discovered in the nervous system and identified as a member of the serpin superfamily. Since that time potential roles for this serine protease inhibitor have been identified in neuronal and non-neuronal systems. Many are linked to inhibition of neuroserpin's principal enzyme target, tissue plasminogen activator (tPA), although some have been suggested to involve alternate non-inhibitory mechanisms. This review focuses mainly on the inhibitory roles of neuroserpin and discusses the evidence supporting tPA as the physiological target. While the major sites of neuroserpin expression are neural, endocrine and immune tissues, most progress on characterizing functional roles for neuroserpin have been in the brain. Roles in emotional behaviour, synaptic plasticity and neuroprotection in stroke and excitotoxicity models are discussed. Current knowledge on three neurological diseases associated with neuroserpin mutation or activity, Familial Encephalopathy with Neuroserpin Inclusion Bodies (FENIB), Alzheimer's disease and brain metastasis is presented. Finally, we consider mechanistic studies that have revealed a distinct inhibitory mechanism for neuroserpin and its possible implications for neuroserpin function.


Asunto(s)
Células/metabolismo , Neuropéptidos/metabolismo , Serpinas/metabolismo , Animales , Enfermedad , Humanos , Modelos Biológicos , Neuropéptidos/química , Proteolisis , Serpinas/química , Activador de Tejido Plasminógeno/metabolismo , Neuroserpina
11.
J Mol Neurosci ; 61(1): 123-131, 2017 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-27510267

RESUMEN

Oxidative stress plays a critical role in neuronal injury and is associated with various neurological diseases. Here, we explored the potential protective effect of neuroserpin against oxidative stress in primary cultured hippocampal neurons. Our results show that neuroserpin inhibits H2O2-induced neurotoxicity in hippocampal cultures as measured by WST, LDH release, and TUNEL assays. We found that neuroserpin enhanced the activation of AKT in cultures subjected to oxidative stress and that the AKT inhibitor Ly294002 blocked this neuroprotective effect. Neuroserpin increased the expression of the anti-apoptotic protein BCL-2 and blocked the activation of caspase-3. Neuroserpin did not increase the level of neuroprotection over levels seen in neurons transduced with a BCL-2 expression vector, and an inhibitor of Trk receptors, K252a, did not block neuroserpin's effect. Taken together, our study demonstrates that neuroserpin protects against oxidative stress-induced dysfunction and death of primary cultured hippocampal neurons through the AKT-BCL-2 signaling pathway through a mechanism that does not involve the Trk receptors and leads to inhibition of caspase-3 activation.


Asunto(s)
Antioxidantes/farmacología , Neuronas/metabolismo , Neuropéptidos/farmacología , Estrés Oxidativo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Inhibidores de Serina Proteinasa/farmacología , Serpinas/farmacología , Animales , Caspasa 3/genética , Caspasa 3/metabolismo , Células Cultivadas , Hipocampo/citología , Hipocampo/metabolismo , Peróxido de Hidrógeno/toxicidad , Neuronas/efectos de los fármacos , Proteínas Proto-Oncogénicas c-akt/genética , Proteínas Proto-Oncogénicas c-bcl-2/genética , Ratas Sprague-Dawley , Transducción de Señal , Neuroserpina
12.
PLoS One ; 11(10): e0165225, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27780255

RESUMEN

Robust and reproducible in vitro models are required for investigating the pathways involved in fluid homeostasis in the human alveolar epithelium. We performed functional and phenotypic characterisation of ion transport in the human pulmonary epithelial cell lines NCI-H441 and A549 to determine their similarity to primary human alveolar type II cells. NCI-H441 cells exhibited high expression of junctional proteins ZO-1, and E-cadherin, seal-forming claudin-3, -4, -5 and Na+-K+-ATPase while A549 cells exhibited high expression of pore-forming claudin-2. Consistent with this phenotype NCI-H441, but not A549, cells formed a functional barrier with active ion transport characterised by higher electrical resistance (529 ± 178 Ω cm2 vs 28 ± 4 Ω cm2), lower paracellular permeability ((176 ± 42) ×10-8 cm/s vs (738 ± 190) ×10-8 cm/s) and higher transepithelial potential difference (11.9 ± 4 mV vs 0 mV). Phenotypic and functional properties of NCI-H441 cells were tuned by varying cell seeding density and supplement concentrations. The cells formed a polarised monolayer typical of in vivo epithelium at seeding densities of 100,000 cells per 12-well insert while higher densities resulted in multiple cell layers. Dexamethasone and insulin-transferrin-selenium supplements were required for the development of high levels of electrical resistance, potential difference and expression of claudin-3 and Na+-K+-ATPase. Treatment of NCI-H441 cells with inhibitors and agonists of sodium and chloride channels indicated sodium absorption through ENaC under baseline and forskolin-stimulated conditions. Chloride transport was not sensitive to inhibitors of the cystic fibrosis transmembrane conductance regulator (CFTR) under either condition. Channels inhibited by 5-nitro-1-(3-phenylpropylamino) benzoic acid (NPPB) contributed to chloride secretion following forskolin stimulation, but not at baseline. These data precisely define experimental conditions for the application of NCI-H441 cells as a model for investigating ion and water transport in the human alveolar epithelium and also identify the pathways of sodium and chloride transport.


Asunto(s)
Técnicas de Cultivo de Célula/métodos , Células Epiteliales/citología , Transporte Iónico , Alveolos Pulmonares/citología , Células A549 , Línea Celular , Canales de Cloruro/metabolismo , Colforsina/farmacología , Medios de Cultivo/química , Células Epiteliales/metabolismo , Homeostasis , Humanos , Modelos Biológicos , Alveolos Pulmonares/metabolismo , Canales de Sodio/metabolismo
13.
Immunol Cell Biol ; 94(10): 955-963, 2016 11.
Artículo en Inglés | MEDLINE | ID: mdl-27301418

RESUMEN

The homeostatic chemokine CCL21 has a pivotal role in lymphocyte homing and compartment localisation within the lymph node, and also affects adhesion between immune cells. The effects of CCL21 are modulated by its mode of presentation, with different cellular responses seen for surface-bound and soluble forms. Here we show that plasmin cleaves surface-bound CCL21 to release the C-terminal peptide responsible for CCL21 binding to glycosaminoglycans on the extracellular matrix and cell surfaces, thereby generating the soluble form. Loss of this anchoring peptide enabled the chemotactic activity of CCL21 and reduced cell tethering. Tissue plasminogen activator did not cleave CCL21 directly but enhanced CCL21 processing through generation of plasmin from plasminogen. The tissue plasminogen activator inhibitor neuroserpin prevented processing of CCL21 and blocked the effects of soluble CCL21 on cell migration. Similarly, the plasmin-specific inhibitor α2-antiplasmin inhibited CCL21-mediated migration of human T cells and dendritic cells and tethering of T cells to APCs. We conclude that the plasmin system proteins plasmin, tissue plasminogen activator and neuroserpin regulate CCL21 function in the immune system by controlling the balance of matrix- and cell-bound CCL21.


Asunto(s)
Movimiento Celular/efectos de los fármacos , Quimiocina CCL21/metabolismo , Células Dendríticas/citología , Células Dendríticas/metabolismo , Plasminógeno/farmacología , Linfocitos T/citología , Linfocitos T/metabolismo , Secuencia de Aminoácidos , Adhesión Celular/efectos de los fármacos , Comunicación Celular/efectos de los fármacos , Membrana Celular/efectos de los fármacos , Membrana Celular/metabolismo , Quimiocina CCL21/química , Células Dendríticas/efectos de los fármacos , Humanos , Neuropéptidos/farmacología , Unión Proteica/efectos de los fármacos , Proteínas Recombinantes/metabolismo , Serpinas/farmacología , Linfocitos T/efectos de los fármacos , Activador de Tejido Plasminógeno/farmacología , alfa 2-Antiplasmina/farmacología , Neuroserpina
14.
Mol Endocrinol ; 30(1): 37-47, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26646096

RESUMEN

Proopiomelanocortin (POMC) is a multivalent prohormone that can be processed into at least 7 biologically active peptide hormones. Processing can begin in the trans-Golgi network (TGN) and continues in the secretory granules of the regulated secretory pathway (RSP). Sorting of POMC into these granules is a complex process. Previously, a membrane-associated form of carboxypeptidase E (CPE) was shown to bind to POMC and facilitate its trafficking into these granules. More recently, secretogranin III (SgIII) was also found to affect POMC trafficking. Here, we show by RNA silencing that CPE and SgIII play a synergistic role in the trafficking of POMC to granules of the RSP in AtT20 cells. Reduction of either protein resulted in increased constitutive secretion of POMC and chromogranin A, which was increased even further when both proteins were reduced together, indicative of missorting at the TGN. In SgIII-reduced cells, POMC accumulated in a compartment that cofractionated and colocalized with syntaxin 6, a marker of the TGN, on sucrose density gradients and in immunocytochemistry, respectively, indicating an accumulation of this protein in the presumed sorting compartment. Regulated secretion of ACTH, as a measure of sorting and processing of POMC in mature granules, was reduced in the SgIII down-regulated cells but was increased in the CPE down-regulated cells. These results suggest that multiple sorting systems exist, providing redundancy to ensure the important task of continuous and accurate trafficking of prohormones to the granules of the RSP for the production of peptide hormones.


Asunto(s)
Carboxipeptidasa H/metabolismo , Cromograninas/metabolismo , Corticotrofos/metabolismo , Proopiomelanocortina/metabolismo , Vías Secretoras/fisiología , Vesículas Secretoras/metabolismo , Animales , Carboxipeptidasa H/genética , Línea Celular , Cromograninas/genética , Ratones , Transporte de Proteínas/fisiología , Interferencia de ARN
15.
Front Cell Neurosci ; 9: 396, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26528129

RESUMEN

Although its roles in the vascular space are most well-known, tissue plasminogen activator (tPA) is widely expressed in the developing and adult nervous system, where its activity is believed to be regulated by neuroserpin, a predominantly brain-specific member of the serpin family of protease inhibitors. In the normal physiological state, tPA has been shown to play roles in the development and plasticity of the nervous system. Ischemic damage, however, may lead to excess tPA activity in the brain and this is believed to contribute to neurodegeneration. In this article, we briefly review the physiological and pathological roles of tPA in the nervous system, which includes neuronal migration, axonal growth, synaptic plasticity, neuroprotection and neurodegeneration, as well as a contribution to neurological disease. We summarize tPA's multiple mechanisms of action and also highlight the contributions of the inhibitor neuroserpin to these processes.

16.
Front Cell Neurosci ; 9: 404, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26500501

RESUMEN

NMDA receptors (NMDARs) play a critical role in neurotransmission, acting as essential mediators of many forms of synaptic plasticity, and also modulating aspects of development, synaptic transmission and cell death. NMDAR-induced responses are dependent on a range of factors including subunit composition and receptor location. Tissue-type plasminogen activator (tPA) is a serine protease that has been reported to interact with NMDARs and modulate NMDAR activity. In this study we report that tPA inhibits NMDAR-mediated changes in intracellular calcium levels in cultures of primary hippocampal neurons stimulated by low (5 µM) but not high (50 µM) concentrations of NMDA. tPA also inhibited changes in calcium levels stimulated by presynaptic release of glutamate following treatment with bicucculine/4-aminopyridine (4-AP). Inhibition was dependent on the proteolytic activity of tPA but was unaffected by α2-antiplasmin, an inhibitor of the tPA substrate plasmin, and receptor-associated protein (RAP), a pan-ligand blocker of the low-density lipoprotein receptor, two proteins previously reported to modulate NMDAR activity. These findings suggest that tPA can modulate changes in intracellular calcium levels in a subset of NMDARs expressed in cultured embryonic hippocampal neurons through a mechanism that involves the proteolytic activity of tPA and synaptic NMDARs.

17.
J Leukoc Biol ; 97(4): 699-710, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25670787

RESUMEN

Contact between T cells and APCs and activation of an effective immune response trigger cellular polarization and the formation of a structured interface known as the immunological synapse. Interactions across the synapse and secretion of T cell and APC-derived factors into the perisynaptic compartment regulate synapse formation and activation of T cells. We report that the serine protease inhibitor neuroserpin, an axonally secreted protein thought to play roles in the formation of the neuronal synapse and refinement of synaptic activity, is expressed in human naïve effector memory and central memory subsets of CD4(+) and CD8(+) T cells, as well as monocytes, B cells, and NK cells. Neuroserpin partially colocalized with a TGN38/LFA-1-positive vesicle population in T cells and translocates to the immunological synapse upon activation with TCR antibodies or antigen-pulsed APCs. Activation of T cells triggered neuroserpin secretion, a rapid, 8.4-fold up-regulation of the serine protease tissue plasminogen activator, the protease target for neuroserpin, and a delayed, 6.25-fold down-regulation of neuroserpin expression. Evidence of polarization and regulated neuroserpin expression was also seen in ex vivo analyses of human lymph nodes and blood-derived T cells. Increased neuroserpin expression was seen in clusters of T cells in the paracortex of human lymph nodes, with some showing polarization to areas of cell:cell interaction. Our results support a role for neuroserpin and tissue plasminogen activator in activation-controlled proteolytic cleavage of proteins in the synaptic or perisynaptic space to modulate immune cell function.


Asunto(s)
Sinapsis Inmunológicas/fisiología , Activación de Linfocitos/fisiología , Neuropéptidos/metabolismo , Serpinas/metabolismo , Linfocitos T/inmunología , Activador de Tejido Plasminógeno/metabolismo , Inmunidad Adaptativa/fisiología , Presentación de Antígeno , Comunicación Celular , Polaridad Celular , Humanos , Memoria Inmunológica , Ganglios Linfáticos/citología , Antígeno-1 Asociado a Función de Linfocito/metabolismo , Subgrupos Linfocitarios/metabolismo , Glicoproteínas de Membrana/metabolismo , Microscopía Fluorescente , Monocitos/metabolismo , Neuropéptidos/genética , Proteolisis , Receptores de Antígenos de Linfocitos T/inmunología , Vesículas Secretoras/química , Serpinas/genética , Fracciones Subcelulares/química , Linfocitos T/metabolismo , Activador de Tejido Plasminógeno/genética , Regulación hacia Arriba , Neuroserpina
18.
J Neurochem ; 133(1): 53-65, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25522164

RESUMEN

Cultures of dissociated hippocampal neurons are often used to study neuronal cell biology. We report that the development of these neurons is strongly affected by chemicals leaching from commonly used disposable medical-grade syringes and syringe filters. Contamination of culture medium by bioactive substance(s) from syringes and filters occurred with multiple manufacturing lots and filter types under normal use conditions and resulted in changes to neurite growth, axon formation and the neuronal microtubule cytoskeleton. The effects on neuronal morphology were concentration dependent and significant effects were detected even after substantial dilution of the contaminated medium. Gas chromatography-mass spectrometry analyses revealed many chemicals eluting from the syringes and filters. Three of these chemicals (stearic acid, palmitic acid and 1,2-ethanediol monoacetate) were tested but showed no effects on neurite growth. Similar changes in neuronal morphology were seen with high concentrations of bisphenol A and dibutyl phthalate, two hormonally active plasticisers. Although no such compounds were detected by gas chromatography­mass spectrometry, unknown plasticisers in leachates may affect neurites. This is the first study to show that leachates from laboratory consumables can alter the growth of cultured hippocampal neurons. We highlight important considerations to ensure leachate contamination does not compromise cell biology experiments.


Asunto(s)
Axones/efectos de los fármacos , Citoesqueleto/efectos de los fármacos , Hipocampo/citología , Hipocampo/efectos de los fármacos , Microtúbulos/efectos de los fármacos , Neuritas/efectos de los fármacos , Plásticos/química , Jeringas , Animales , Axones/ultraestructura , Compuestos de Bencidrilo/química , Compuestos de Bencidrilo/farmacología , Células Cultivadas , Dibutil Ftalato/química , Dibutil Ftalato/farmacología , Equipos Desechables , Filtración/instrumentación , Ratones , Neuritas/ultraestructura , Neurogénesis/efectos de los fármacos , Fenoles/química , Fenoles/farmacología
19.
Proteins ; 83(1): 135-52, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25363759

RESUMEN

The analysis of sequence conservation is commonly used to predict functionally important sites in proteins. We have developed an approach that first identifies highly conserved sites in a set of orthologous sequences using a weighted substitution-matrix-based conservation score and then filters these conserved sites based on the pattern of conservation present in a wider alignment of sequences from the same family and structural information to identify surface-exposed sites. This allows us to detect specific functional sites in the target protein and exclude regions that are likely to be generally important for the structure or function of the wider protein family. We applied our method to two members of the serpin family of serine protease inhibitors. We first confirmed that our method successfully detected the known heparin binding site in antithrombin while excluding residues known to be generally important in the serpin family. We next applied our sequence analysis approach to neuroserpin and used our results to guide site-directed polyalanine mutagenesis experiments. The majority of the mutant neuroserpin proteins were found to fold correctly and could still form inhibitory complexes with tissue plasminogen activator (tPA). Kinetic analysis of tPA inhibition, however, revealed altered inhibitory kinetics in several of the mutant proteins, with some mutants showing decreased association with tPA and others showing more rapid dissociation of the covalent complex. Altogether, these results confirm that our sequence analysis approach is a useful tool that can be used to guide mutagenesis experiments for the detection of specific functional sites in proteins.


Asunto(s)
Neuropéptidos/antagonistas & inhibidores , Neuropéptidos/química , Análisis de Secuencia de Proteína/métodos , Homología de Secuencia de Aminoácido , Serpinas/química , Animales , Antitrombinas/química , Secuencia Conservada , Electroforesis en Gel de Poliacrilamida , Humanos , Cinética , Modelos Moleculares , Mutagénesis/genética , Proteínas Mutantes/química , Mutación/genética , Neuropéptidos/metabolismo , Unión Proteica , Ratas , Serpinas/metabolismo , Activador de Tejido Plasminógeno/metabolismo , Neuroserpina
20.
J Transl Med ; 12: 292, 2014 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-25331734

RESUMEN

BACKGROUND: microRNAs (miRNAs) are emerging as key regulators of the immune system, but their role in CD8+ T cell differentiation is not well explored. Some evidence suggests that signals from cell surface receptors influence the expression of miRNAs in CD8+ T cells, and may have consequent effects on cell phenotype and function. We set out to investigate whether common gamma chain cytokines modulated human CD8+ T cell expression of miR-146a, which previous studies have associated with different stages of CD8+ differentiation. We also investigated how changes in miR-146a related to other miRNAs that alter with CD8+ differentiation status. METHODS: We treated human CD8+ T cells with the cytokines IL-2, IL-7 or IL-15 either at rest or after stimulation with anti-CD3 and anti-CD28. For some experiments we also purified human CD8+ T cell subsets ex vivo. Flow cytometry was used in parallel to assess cell surface memory marker expression. Total RNA from these cells was subjected to microarray analysis and real-time PCR for miRNA expression. Nucleofection studies were performed to assess potential mRNA targets of miR-146a. RESULTS: We find that miR-146a is up-regulated in naïve CD8+ T cells exposed to IL-2 or IL-15, even in the absence of an activating T cell receptor stimulus, but not when IL-7 is also present. miR-146a expression correlates with a memory phenotype in both ex vivo and in vitro cultured cells although in our hands overexpression of miR-146a was not sufficient alone to drive a full memory phenotype. In ex vivo analysis, miR-146a was one of a small number of miRNAs that was differentially expressed between naïve and memory CD8+ T cells. CONCLUSIONS: miR-146a is emerging as a critical regulator of immune system. Our data shows that miR-146a expression is strongly influenced by the cytokine milieu even in the absence of a T cell receptor stimulus. Our results have implications for studies designed to assess the function of miR-146a, help to define a fingerprint of miRNA expression in CD8+ T cell subsets and may be useful when designing optimal protocols for T cell expansion as efficacy of T cell immunotherapy is correlated with an 'early' memory phenotype.


Asunto(s)
Linfocitos T CD8-positivos/metabolismo , Citocinas/farmacología , Regulación de la Expresión Génica/efectos de los fármacos , MicroARNs/genética , Subgrupos de Linfocitos T/metabolismo , Antígenos/metabolismo , Linfocitos T CD8-positivos/efectos de los fármacos , Proteína de Dominio de Muerte Asociada a Fas/metabolismo , Perfilación de la Expresión Génica , Humanos , Memoria Inmunológica , Interleucina-15/farmacología , Interleucina-2/farmacología , Interleucina-7/farmacología , MicroARNs/metabolismo , Fenotipo , Receptores de Antígenos de Linfocitos T/metabolismo , Receptores CCR7/metabolismo , Subgrupos de Linfocitos T/efectos de los fármacos , Factor 6 Asociado a Receptor de TNF/metabolismo , Regulación hacia Arriba/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...