Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Ecol Evol ; 3(6): 1529-38, 2013 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-23789065

RESUMEN

The phenotype-linked fertility hypothesis proposes that male fertility is advertised via phenotypic signals, explaining female preference for highly sexually ornamented males. An alternative view is that highly attractive males constrain their ejaculate allocation per mating so as to participate in a greater number of matings. Males are also expected to bias their ejaculate allocation to the most fecund females. We test these hypotheses in the African stalk-eyed fly, Diasemopsis meigenii. We ask how male ejaculate allocation strategy is influenced by male eyespan and female size. Despite large eyespan males having larger internal reproductive organs, we found no association between male eyespan and spermatophore size or sperm number, lending no support to the phenotype-linked fertility hypothesis. However, males mated for longer and transferred more sperm to large females. As female size was positively correlated with fecundity, this suggests that males gain a selective advantage by investing more in large females. Given these findings, we consider how female mate preference for large male eyespan can be adaptive despite the lack of obvious direct benefits.

2.
BMC Evol Biol ; 10: 227, 2010 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-20663190

RESUMEN

BACKGROUND: Polymorphisms of single amino acid repeats (SARPs) are a potential source of genetic variation for rapidly evolving morphological traits. Here, we characterize variation in and test for an association between SARPs and head shape, a trait under strong sexual selection, in the stalk-eyed fly, Teleopsis dalmanni. Using an annotated expressed sequence tag database developed from eye-antennal imaginal disc tissues in T. dalmanni we identified 98 genes containing nine or more consecutive copies of a single amino acid. We then quantify variation in length and allelic diversity for 32 codon and 15 noncodon repeat regions in a large outbred population. We also assessed the frequency with which amino acid repeats are either gained or lost by identifying sequence similarities between T. dalmanni SARP loci and their orthologs in Drosophila melanogaster. Finally, to identify SARP containing genes that may influence head development we conducted a two-generation association study after assortatively mating for extreme relative eyespan. RESULTS: We found that glutamine repeats occur more often than expected by amino acid abundance among 3,400 head development genes in T. dalmanni and D. melanogaster. Furthermore, glutamine repeats occur disproportionately in transcription factors. Loci with glutamine repeats exhibit heterozygosities and allelic diversities that do not differ from noncoding dinucleotide microsatellites, including greater variation among X-linked than autosomal regions. In the majority of cases, repeat tracts did not overlap between T. dalmanni and D. melanogaster indicating that large glutamine repeats are gained or lost frequently during Dipteran evolution. Analysis of covariance reveals a significant effect of parental genotype on mean progeny eyespan, with body length as a covariate, at six SARP loci [CG33692, ptip, band4.1 inhibitor LRP interactor, corto, 3531953:1, and ecdysone-induced protein 75B (Eip75B)]. Mixed model analysis of covariance using the eyespan of siblings segregating for repeat length variation confirms that significant genotype-phenotype associations exist for at least one sex at five of these loci and for one gene, CG33692, longer repeats were associated with longer relative eyespan in both sexes. CONCLUSION: Among genes expressed during head development in stalk-eyed flies, long codon repeats typically contain glutamine, occur in transcription factors and exhibit high levels of heterozygosity. Furthermore, the presence of significant associations within families between repeat length and head shape indicates that six genes, or genes linked to them, contribute genetic variation to the development of this extremely sexually dimorphic trait.


Asunto(s)
Dípteros/genética , Cabeza/anatomía & histología , Polimorfismo Genético , Alelos , Animales , Codón , Dípteros/anatomía & histología , Drosophila melanogaster/genética , Etiquetas de Secuencia Expresada , Femenino , Genes de Insecto , Estudios de Asociación Genética , Variación Genética , Genotipo , Masculino , Péptidos/genética , Secuencias Repetitivas de Aminoácido , Análisis de Secuencia de ADN , Especificidad de la Especie
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...