RESUMEN
While bacteriophage applications benefit from effective phage engineering, selecting the desired genotype after subtle modifications remains challenging. Here, we describe a two-phase endogenous CRISPR-Cas-based phage engineering approach that enables selection of small defined edits in Pectobacterium carotovorum phage ZF40. We designed plasmids containing sequences homologous to ZF40 and a mini-CRISPR array. The plasmids allowed genome editing through homologous recombination and counter-selection against non-recombinant phage genomes using an endogenous type I-E CRISPR-Cas system. With this technique, we first deleted target genes and subsequently restored loci with modifications. This two-phase approach circumvented major challenges in subtle phage modifications, including inadequate sequence distinction for CRISPR-Cas counter-selection and the requirement of a protospacer-adjacent motif, limiting sequences that can be modified. Distinct 20-bp barcodes were incorporated through engineering as differential target sites for programmed CRISPR-Cas activity, which allowed quantification of phage variants in mixed populations. This method aids studies and applications that require mixtures of similar phages.
RESUMEN
Deploying anti-CRISPR proteins is a potent strategy used by phages to inhibit bacterial CRISPR-Cas defense. In a new Nature paper, Trost et al.1 discover and characterize an exciting anti-CRISPR mechanism with possible implications beyond this microscopic arms race.
Asunto(s)
Bacterias , Bacteriófagos , Sistemas CRISPR-Cas , Bacteriófagos/genética , Bacterias/genética , Bacterias/inmunología , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismoRESUMEN
In all organisms, regulation of gene expression must be adjusted to meet cellular requirements and frequently involves helix-turn-helix (HTH) domain proteins1. For instance, in the arms race between bacteria and bacteriophages, rapid expression of phage anti-CRISPR (acr) genes upon infection enables evasion from CRISPR-Cas defence; transcription is then repressed by an HTH-domain-containing anti-CRISPR-associated (Aca) protein, probably to reduce fitness costs from excessive expression2-5. However, how a single HTH regulator adjusts anti-CRISPR production to cope with increasing phage genome copies and accumulating acr mRNA is unknown. Here we show that the HTH domain of the regulator Aca2, in addition to repressing Acr synthesis transcriptionally through DNA binding, inhibits translation of mRNAs by binding conserved RNA stem-loops and blocking ribosome access. The cryo-electron microscopy structure of the approximately 40 kDa Aca2-RNA complex demonstrates how the versatile HTH domain specifically discriminates RNA from DNA binding sites. These combined regulatory modes are widespread in the Aca2 family and facilitate CRISPR-Cas inhibition in the face of rapid phage DNA replication without toxic acr overexpression. Given the ubiquity of HTH-domain-containing proteins, it is anticipated that many more of them elicit regulatory control by dual DNA and RNA binding.
Asunto(s)
Bacteriófagos , Sistemas CRISPR-Cas , Proteínas de Unión al ADN , Regulación Viral de la Expresión Génica , Secuencias Hélice-Giro-Hélice , Proteínas de Unión al ARN , Proteínas Virales , Bacteriófagos/química , Bacteriófagos/genética , Bacteriófagos/metabolismo , Bacteriófagos/ultraestructura , Sitios de Unión , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas/genética , Proteínas Asociadas a CRISPR/metabolismo , Microscopía por Crioelectrón , Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Proteínas de Unión al ADN/ultraestructura , Genes Virales , Modelos Moleculares , Conformación de Ácido Nucleico , Pectobacterium carotovorum/virología , Biosíntesis de Proteínas/genética , Dominios Proteicos , Ribosomas/metabolismo , ARN Mensajero/química , ARN Mensajero/genética , ARN Mensajero/metabolismo , ARN Mensajero/ultraestructura , ARN Viral/química , ARN Viral/genética , ARN Viral/metabolismo , ARN Viral/ultraestructura , Proteínas de Unión al ARN/química , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Proteínas de Unión al ARN/ultraestructura , Especificidad por Sustrato , Transcripción Genética , Proteínas Virales/química , Proteínas Virales/genética , Proteínas Virales/metabolismo , Proteínas Virales/ultraestructuraRESUMEN
To contend with the diversity and ubiquity of bacteriophages and other mobile genetic elements, bacteria have developed an arsenal of immune defence mechanisms. Bacterial defences include CRISPR-Cas, restriction-modification and a growing list of mechanistically diverse systems, which constitute the bacterial 'immune system'. As a response, bacteriophages and mobile genetic elements have evolved direct and indirect mechanisms to circumvent or block bacterial defence pathways and ensure successful infection. Recent advances in methodological and computational approaches, as well as the increasing availability of genome sequences, have boosted the discovery of direct inhibitors of bacterial defence systems. In this Review, we discuss methods for the discovery of direct inhibitors, their diverse mechanisms of action and perspectives on their emerging applications in biotechnology and beyond.
Asunto(s)
Bacteriófagos , Sistemas CRISPR-Cas , Bacterias/genética , Bacteriófagos/genéticaRESUMEN
Prokaryotic adaptation is strongly influenced by the horizontal acquisition of beneficial traits via mobile genetic elements (MGEs), such as viruses/bacteriophages and plasmids. However, MGEs can also impose a fitness cost due to their often parasitic nature and differing evolutionary trajectories. In response, prokaryotes have evolved diverse immune mechanisms against MGEs. Recently, our understanding of the abundance and diversity of prokaryotic immune systems has greatly expanded. These defense systems can degrade the invading genetic material, inhibit genome replication, or trigger abortive infection, leading to population protection. In this review, we highlight these strategies, focusing on the most recent discoveries. The study of prokaryotic defenses not only sheds light on microbial evolution but also uncovers novel enzymatic activities with promising biotechnological applications.
Asunto(s)
Bacteriófagos , Células Procariotas , Plásmidos , Bacteriófagos/genética , Genoma , Secuencias Repetitivas Esparcidas/genéticaRESUMEN
CRISPR-Cas systems are adaptive immune systems in bacteria and archaea that provide resistance against phages and other mobile genetic elements. To fight against CRISPR-Cas systems, phages and archaeal viruses encode anti-CRISPR (Acr) proteins that inhibit CRISPR-Cas systems. The expression of acr genes is controlled by anti-CRISPR-associated (Aca) proteins encoded within acr-aca operons. AcrIF24 is a recently identified Acr that inhibits the type I-F CRISPR-Cas system. Interestingly, AcrIF24 was predicted to be a dual-function Acr and Aca. Here, we elucidated the crystal structure of AcrIF24 from Pseudomonas aeruginosa and identified its operator sequence within the regulated acr-aca operon promoter. The structure of AcrIF24 has a novel domain composition, with wing, head and body domains. The body domain is responsible for recognition of promoter DNA for Aca regulatory activity. We also revealed that AcrIF24 directly bound to type I-F Cascade, specifically to Cas7 via its head domain as part of its Acr mechanism. Our results provide new molecular insights into the mechanism of a dual functional Acr-Aca protein.
Asunto(s)
Bacteriófagos , Proteínas Asociadas a CRISPR , Sistemas CRISPR-Cas , Proteínas Asociadas a CRISPR/genética , Proteínas Asociadas a CRISPR/metabolismo , Bacteriófagos/genética , Pseudomonas aeruginosa/metabolismo , Operón/genéticaRESUMEN
Many bacteria use CRISPR-Cas systems to defend against invasive mobile genetic elements (MGEs). In response, MGEs have developed strategies to resist CRISPR-Cas, including the use of anti-CRISPR (Acr) proteins. Known acr genes may be followed in an operon by a putative regulatory Acr-associated gene (aca), suggesting the importance of regulation. Although ten families of helix-turn-helix (HTH) motif containing Aca proteins have been identified (Aca1-10), only three have been tested and shown to be transcriptional repressors of acr-aca expression. The AcrIIA1 protein (a Cas9 inhibitor) also contains a functionally similar HTH containing repressor domain. Here, we identified and analysed Aca and AcrIIA1 homologs across all bacterial genomes. Using HMM models we found aca-like genes are widely distributed in bacteria, both with and without known acr genes. The putative promoter regions of acr-aca operons were analysed and members of each family of bacterial Aca tested for regulatory function. For each Aca family, we predicted a conserved inverted repeat binding site within a core promoter. Promoters containing these sites directed reporter expression in E. coli and were repressed by the cognate Aca protein. These data demonstrate that acr repression by Aca proteins is widely conserved in nature.
Asunto(s)
Proteínas Asociadas a CRISPR , Proteínas Asociadas a CRISPR/genética , Escherichia coli/genética , Sistemas CRISPR-Cas , Operón/genética , Secuencias Hélice-Giro-Hélice , Bacterias/genética , Proteínas Bacterianas/genéticaRESUMEN
CRISPR-Cas systems are bacterial defense systems for fighting against invaders such as bacteriophages and mobile genetic elements. To escape destruction by these bacterial immune systems, phages have co-evolved multiple anti-CRISPR (Acr) proteins, which inhibit CRISPR-Cas function. Many acr genes form an operon with genes encoding transcriptional regulators, called anti-CRISPR-associated (Aca) proteins. Aca10 is the most recently discovered Aca family that is encoded within an operon containing acrIC7 and acrIC6 in Pseudomonas citronellolis. Here, we report the high-resolution crystal structure of an Aca10 protein to unveil the molecular basis of transcriptional repressor role of Aca10 in the acrIC7-acrIC6-aca10 operon. We identified that Aca10 forms a dimer in solution, which is critical for binding specific DNA. We also showed that Aca10 directly recognizes a 21 bp palindromic sequence in the promoter of the acr operon. Finally, we revealed that R44 of Aca10 is a critical residue involved in the DNA binding, which likely results in a high degree of DNA bending.
Asunto(s)
Bacteriófagos , Proteínas Asociadas a CRISPR , Bacterias/genética , Bacteriófagos/genética , Proteínas Asociadas a CRISPR/genética , Sistemas CRISPR-Cas/genética , Operón/genética , Factores de Transcripción/genéticaRESUMEN
Where there is defense, there is counter-defense. A paper by Hobbs et al. (2022) reconfirms that this emerging tenet of the arms race between bacteria and their predators also holds true for phage defense systems that rely on secondary messenger signals.
Asunto(s)
Bacteriófagos , Bacterias/genética , Bacteriófagos/genéticaRESUMEN
Epigenetic DNA methylation plays an important role in bacteria by influencing gene expression and allowing discrimination between self-DNA and intruders such as phages and plasmids. Restriction-modification (RM) systems use a methyltransferase (MTase) to modify a specific sequence motif, thus protecting host DNA from cleavage by a cognate restriction endonuclease (REase) while leaving invading DNA vulnerable. Other REases occur solitarily and cleave methylated DNA. REases and RM systems are frequently mobile, influencing horizontal gene transfer by altering the compatibility of the host for foreign DNA uptake. However, whether mobile defence systems affect pre-existing host defences remains obscure. Here, we reveal an epigenetic conflict between an RM system (PcaRCI) and a methylation-dependent REase (PcaRCII) in the plant pathogen Pectobacterium carotovorum RC5297. The PcaRCI RM system provides potent protection against unmethylated plasmids and phages, but its methylation motif is targeted by the methylation-dependent PcaRCII. This potentially lethal co-existence is enabled through epigenetic silencing of the PcaRCII-encoding gene via promoter methylation by the PcaRCI MTase. Comparative genome analyses suggest that the PcaRCII-encoding gene was already present and was silenced upon establishment of the PcaRCI system. These findings provide a striking example for selfishness of RM systems and intracellular competition between different defences.
Asunto(s)
Bacteriófagos , Enzimas de Restricción-Modificación del ADN , Bacteriófagos/genética , Bacteriófagos/metabolismo , Metilación de ADN/genética , Enzimas de Restricción del ADN/genética , Enzimas de Restricción del ADN/metabolismo , Enzimas de Restricción-Modificación del ADN/genética , Enzimas de Restricción-Modificación del ADN/metabolismo , Endonucleasas/metabolismo , Epigénesis Genética , Regulación Bacteriana de la Expresión GénicaRESUMEN
Bacteria use adaptive CRISPR-Cas immune mechanisms to protect from invasion by bacteriophages and other mobile genetic elements. In response, bacteriophages and mobile genetic elements have co-evolved anti-CRISPR proteins to inhibit the bacterial defense. We and others have previously shown that anti-CRISPR associated (Aca) proteins can regulate this anti-CRISPR counter-attack. Here, we report the first structure of an Aca protein, the Aca2 DNA-binding transcriptional autorepressor from Pectobacterium carotovorum bacteriophage ZF40, determined to 1.34 Å. Aca2 presents a conserved N-terminal helix-turn-helix DNA-binding domain and a previously uncharacterized C-terminal dimerization domain. Dimerization positions the Aca2 recognition helices for insertion into the major grooves of target DNA, supporting its role in regulating anti-CRISPRs. Furthermore, database comparisons identified uncharacterized Aca2 structural homologs in pathogenic bacteria, suggesting that Aca2 represents the first characterized member of a more widespread family of transcriptional regulators.
Asunto(s)
Bacteriófagos , Sistemas CRISPR-Cas , Bacterias , Bacteriófagos/química , Bacteriófagos/genética , Sistemas CRISPR-Cas/genética , Unión Proteica , Factores de Transcripción/genéticaRESUMEN
The rise of antibiotic-resistant bacteria has led to renewed interest in the use of their natural enemies, phages, for the prevention and treatment of infections. However, phage therapy requires detailed knowledge of the interactions between these entities. Bacteria defend themselves against phage predation with a large repertoire of defences. Among these, CRISPR-Cas systems stand out due to their adaptive character, mechanistic complexity and diversity, and present a significant hurdle for phage infection. Here, we provide an overview of how phages can circumvent CRISPR-Cas defence, ranging from target sequence mutations and DNA modifications to anti-CRISPR proteins and nucleus-like protective structures. An in-depth understanding of these phage evasion strategies is crucial for the successful development of phage therapy applications.
Asunto(s)
Bacteriófagos , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , Bacterias/genética , Bacteriófagos/genética , Sistemas CRISPR-Cas/genéticaRESUMEN
CRISPR-Cas systems are widespread bacterial adaptive defence mechanisms that provide protection against bacteriophages. In response, phages have evolved anti-CRISPR proteins that inactivate CRISPR-Cas systems of their hosts, enabling successful infection. Anti-CRISPR genes are frequently found in operons with genes encoding putative transcriptional regulators. The role, if any, of these anti-CRISPR-associated (aca) genes in anti-CRISPR regulation is unclear. Here, we show that Aca2, encoded by the Pectobacterium carotovorum temperate phage ZF40, is an autoregulator that represses the anti-CRISPR-aca2 operon. Aca2 is a helix-turn-helix domain protein that forms a homodimer and interacts with two inverted repeats in the anti-CRISPR promoter. The inverted repeats are similar in sequence but differ in their Aca2 affinity, and we propose that they have evolved to fine-tune, and downregulate, anti-CRISPR production at different stages of the phage life cycle. Specific, high-affinity binding of Aca2 to the first inverted repeat blocks the promoter and induces DNA bending. The second inverted repeat only contributes to repression at high Aca2 concentrations in vivo, and no DNA binding was detectable in vitro. Our investigation reveals the mechanism by which an Aca protein regulates expression of its associated anti-CRISPR.
Asunto(s)
Sistemas CRISPR-Cas/genética , Pectobacterium carotovorum/genética , Transcripción Genética , Proteínas Virales/genética , Bacteriófagos/genética , Escherichia coli/genética , Operón/genética , Regiones Promotoras Genéticas/genética , Dominios Proteicos/genética , Factores de Transcripción/genéticaRESUMEN
Many prokaryotes possess CRISPR-Cas adaptive immune systems to defend against viruses and invading mobile genetic elements. CRISPR-Cas immunity relies on genetic memories, termed spacers, for sequence-specific recognition of infections. The diversity of spacers within host populations is important for immune resilience, but we have limited understanding of how CRISPR diversity is generated. Type I CRISPR-Cas systems use existing spacers to enhance the acquisition of new spacers through primed CRISPR adaptation (priming). Here, we present a pathway to priming that is stimulated by imprecisely acquired (slipped) spacers. Slipped spacers are less effective for immunity but increase priming compared with canonical spacers. The benefits of slipping depend on the relative rates of phage mutation and adaptation during defense. We propose that slipped spacers provide a route to increase population-level spacer diversity that pre-empts phage escape mutant proliferation and that the trade-off between adaptation and immunity is important in diverse CRISPR-Cas systems.