Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
BMC Evol Biol ; 16(1): 250, 2016 11 17.
Artículo en Inglés | MEDLINE | ID: mdl-27855630

RESUMEN

BACKGROUND: Opsins are the only class of proteins used for light perception in image-forming eyes. Gene duplication and subsequent functional divergence of opsins have played an important role in expanding photoreceptive capabilities of organisms by altering what wavelengths of light are absorbed by photoreceptors (spectral tuning). However, new opsin copies may also acquire novel function or subdivide ancestral functions through changes to temporal, spatial or the level of gene expression. Here, we test how opsin gene copies diversify in function and evolutionary fate by characterizing four rhabdomeric (Gq-protein coupled) opsins in the scallop, Argopecten irradians, identified from tissue-specific transcriptomes. RESULTS: Under a phylogenetic analysis, we recovered a pattern consistent with two rounds of duplication that generated the genetic diversity of scallop Gq-opsins. We found strong support for differential expression of paralogous Gq-opsins across ocular and extra-ocular photosensitive tissues, suggesting that scallop Gq-opsins are used in different biological contexts due to molecular alternations outside and within the protein-coding regions. Finally, we used available protein models to predict which amino acid residues interact with the light-absorbing chromophore. Variation in these residues suggests that the four Gq-opsin paralogs absorb different wavelengths of light. CONCLUSIONS: Our results uncover novel genetic and functional diversity in the light-sensing structures of the scallop, demonstrating the complicated nature of Gq-opsin diversification after gene duplication. Our results highlight a change in the nearly ubiquitous shadow response in molluscs to a narrowed functional specificity for visual processes in the eyed scallop. Our findings provide a starting point to study how gene duplication may coincide with eye evolution, and more specifically, different ways neofunctionalization of Gq-opsins may occur.


Asunto(s)
Bahías , Duplicación de Gen , Perfilación de la Expresión Génica , Opsinas/química , Opsinas/genética , Pectinidae/genética , Empalme Alternativo/genética , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Animales , Subunidades alfa de la Proteína de Unión al GTP Gq-G11/química , Subunidades alfa de la Proteína de Unión al GTP Gq-G11/genética , Subunidades alfa de la Proteína de Unión al GTP Gq-G11/metabolismo , Funciones de Verosimilitud , Modelos Biológicos , Opsinas/metabolismo , Filogenia , Estructura Terciaria de Proteína , Alineación de Secuencia , Homología de Secuencia de Aminoácido , Transcriptoma/genética
2.
PLoS One ; 10(12): e0145682, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26716828

RESUMEN

Gene synthesis is frequently used in modern molecular biology research either to create novel genes or to obtain natural genes when the synthesis approach is more flexible and reliable than cloning. DNA chemical synthesis has limits on both its length and yield, thus full-length genes have to be hierarchically constructed from synthesized DNA fragments. Gibson Assembly and its derivatives are the simplest methods to assemble multiple double-stranded DNA fragments. Currently, up to 12 dsDNA fragments can be assembled at once with Gibson Assembly according to its vendor. In practice, the number of dsDNA fragments that can be assembled in a single reaction are much lower. We have developed a rational design method for gene construction that allows high-number dsDNA fragments to be assembled into full-length genes in a single reaction. Using this new design method and a modified version of the Gibson Assembly protocol, we have assembled 3 different genes from up to 45 dsDNA fragments at once. Our design method uses the thermodynamic analysis software Picky that identifies all unique junctions in a gene where consecutive DNA fragments are specifically made to connect to each other. Our novel method is generally applicable to most gene sequences, and can improve both the efficiency and cost of gene assembly.


Asunto(s)
ADN/genética , Genes/genética , Reacción en Cadena de la Polimerasa/métodos , Clonación Molecular/métodos , Programas Informáticos , Termodinámica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...