Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Cell Rep ; 43(4): 114056, 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38581678

RESUMEN

Little is known of the brain mechanisms that mediate sex-specific autism symptoms. Here, we demonstrate that deletion of the autism spectrum disorder (ASD)-risk gene, Pten, in neocortical pyramidal neurons (NSEPten knockout [KO]) results in robust cortical circuit hyperexcitability selectively in female mice observed as prolonged spontaneous persistent activity states. Circuit hyperexcitability in females is mediated by metabotropic glutamate receptor 5 (mGluR5) and estrogen receptor α (ERα) signaling to mitogen-activated protein kinases (Erk1/2) and de novo protein synthesis. Pten KO layer 5 neurons have a female-specific increase in mGluR5 and mGluR5-dependent protein synthesis. Furthermore, mGluR5-ERα complexes are generally elevated in female cortices, and genetic reduction of ERα rescues enhanced circuit excitability, protein synthesis, and neuron size selectively in NSEPten KO females. Female NSEPten KO mice display deficits in sensory processing and social behaviors as well as mGluR5-dependent seizures. These results reveal mechanisms by which sex and a high-confidence ASD-risk gene interact to affect brain function and behavior.


Asunto(s)
Trastorno Autístico , Modelos Animales de Enfermedad , Receptor alfa de Estrógeno , Ratones Noqueados , Neocórtex , Fosfohidrolasa PTEN , Receptor del Glutamato Metabotropico 5 , Animales , Femenino , Masculino , Ratones , Trastorno Autístico/metabolismo , Trastorno Autístico/fisiopatología , Trastorno Autístico/genética , Trastorno Autístico/patología , Receptor alfa de Estrógeno/metabolismo , Ratones Endogámicos C57BL , Neocórtex/metabolismo , Neocórtex/patología , Fosfohidrolasa PTEN/metabolismo , Fosfohidrolasa PTEN/genética , Células Piramidales/metabolismo , Receptor del Glutamato Metabotropico 5/metabolismo , Conducta Social
2.
Cell Rep ; 37(7): 109997, 2021 11 16.
Artículo en Inglés | MEDLINE | ID: mdl-34788630

RESUMEN

The anorexigenic effect of serotonergic compounds has largely been attributed to activation of serotonin 2C receptors (Htr2cs). Using mouse genetic models in which Htr2c can be selectively deleted or restored (in Htr2c-null mice), we investigate the role of Htr2c in forebrain Sim1 neurons. Unexpectedly, we find that Htr2c acts in these neurons to promote food intake and counteract the anorectic effect of serotonergic appetite suppressants. Furthermore, Htr2c marks a subset of Sim1 neurons in the paraventricular nucleus of the hypothalamus (PVH). Chemogenetic activation of these neurons in adult mice suppresses hunger, whereas their silencing promotes feeding. In support of an orexigenic role of PVH Htr2c, whole-cell patch-clamp experiments demonstrate that activation of Htr2c inhibits PVH neurons. Intriguingly, this inhibition is due to Gαi/o-dependent activation of ATP-sensitive K+ conductance, a mechanism of action not identified previously in the mammalian nervous system.


Asunto(s)
Subunidades alfa de la Proteína de Unión al GTP Gi-Go/metabolismo , Núcleo Hipotalámico Paraventricular/metabolismo , Receptor de Serotonina 5-HT2C/metabolismo , Animales , Anorexia , Depresores del Apetito/metabolismo , Depresores del Apetito/farmacología , Metabolismo Energético/fisiología , Conducta Alimentaria/fisiología , Hambre/fisiología , Hipotálamo/metabolismo , Hipotálamo/fisiología , Masculino , Ratones , Ratones de la Cepa 129 , Ratones Endogámicos C57BL , Ratones Noqueados , Modelos Animales , Neuronas/fisiología , Núcleo Hipotalámico Paraventricular/citología , Núcleo Hipotalámico Paraventricular/fisiología , Potasio/metabolismo , Receptor de Serotonina 5-HT2C/genética , Serotonina/metabolismo , Serotonina/farmacología , Serotoninérgicos
3.
J Exp Med ; 218(7)2021 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-33978701

RESUMEN

Atypical antipsychotics such as risperidone cause drug-induced metabolic syndrome. However, the underlying mechanisms remain largely unknown. Here, we report a new mouse model that reliably reproduces risperidone-induced weight gain, adiposity, and glucose intolerance. We found that risperidone treatment acutely altered energy balance in C57BL/6 mice and that hyperphagia accounted for most of the weight gain. Transcriptomic analyses in the hypothalamus of risperidone-fed mice revealed that risperidone treatment reduced the expression of Mc4r. Furthermore, Mc4r in Sim1 neurons was necessary for risperidone-induced hyperphagia and weight gain. Moreover, we found that the same pathway underlies the obesogenic effect of olanzapine-another commonly prescribed antipsychotic drug. Remarkably, whole-cell patch-clamp recording demonstrated that risperidone acutely inhibited the activity of hypothalamic Mc4r neurons via the opening of a postsynaptic potassium conductance. Finally, we showed that treatment with setmelanotide, an MC4R-specific agonist, mitigated hyperphagia and obesity in both risperidone- and olanzapine-fed mice.


Asunto(s)
Antipsicóticos/farmacología , Receptor de Melanocortina Tipo 4/metabolismo , Risperidona/farmacología , Aumento de Peso/efectos de los fármacos , Animales , Femenino , Hiperfagia/metabolismo , Hipotálamo/efectos de los fármacos , Hipotálamo/metabolismo , Masculino , Síndrome Metabólico/metabolismo , Ratones , Ratones Endogámicos C57BL , Modelos Animales , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Obesidad/metabolismo , Olanzapina/farmacología , Potasio/metabolismo , Potenciales Sinápticos/efectos de los fármacos , Transcriptoma/efectos de los fármacos , alfa-MSH/análogos & derivados , alfa-MSH/farmacología
4.
Sci Rep ; 10(1): 2737, 2020 02 17.
Artículo en Inglés | MEDLINE | ID: mdl-32066765

RESUMEN

Astronauts on interplanetary missions - such as to Mars - will be exposed to space radiation, a spectrum of highly-charged, fast-moving particles that includes 56Fe and 28Si. Earth-based preclinical studies show space radiation decreases rodent performance in low- and some high-level cognitive tasks. Given astronaut use of touchscreen platforms during training and space flight and given the ability of rodent touchscreen tasks to assess functional integrity of brain circuits and multiple cognitive domains in a non-aversive way, here we exposed 6-month-old C57BL/6J male mice to whole-body space radiation and subsequently assessed them on a touchscreen battery. Relative to Sham treatment, 56Fe irradiation did not overtly change performance on tasks of visual discrimination, reversal learning, rule-based, or object-spatial paired associates learning, suggesting preserved functional integrity of supporting brain circuits. Surprisingly, 56Fe irradiation improved performance on a dentate gyrus-reliant pattern separation task; irradiated mice learned faster and were more accurate than controls. Improved pattern separation performance did not appear to be touchscreen-, radiation particle-, or neurogenesis-dependent, as 56Fe and 28Si irradiation led to faster context discrimination in a non-touchscreen task and 56Fe decreased new dentate gyrus neurons relative to Sham. These data urge revisitation of the broadly-held view that space radiation is detrimental to cognition.


Asunto(s)
Cognición/efectos de la radiación , Radiación Cósmica , Giro Dentado/efectos de la radiación , Aprendizaje por Asociación de Pares/efectos de la radiación , Reconocimiento Visual de Modelos/efectos de la radiación , Aprendizaje Inverso/efectos de la radiación , Animales , Astronautas , Ciencias Bioconductuales , Cognición/fisiología , Giro Dentado/fisiología , Isótopos de Hierro , Masculino , Ratones , Ratones Endogámicos C57BL , Neuronas/citología , Neuronas/fisiología , Neuronas/efectos de la radiación , Aprendizaje por Asociación de Pares/fisiología , Reconocimiento Visual de Modelos/fisiología , Aprendizaje Inverso/fisiología , Vuelo Espacial , Irradiación Corporal Total
5.
Mol Psychiatry ; 25(11): 2832-2843, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-30038231

RESUMEN

Recent findings from in vivo-imaging and human post-mortem tissue studies in schizophrenic psychosis (SzP), have demonstrated functional and molecular changes in hippocampal subfields that can be associated with hippocampal hyperexcitability. In this study, we used a subfield-specific GluN1 knockout mouse with a disease-like molecular perturbation expressed only in hippocampal dentate gyrus (DG) and assessed its association with hippocampal physiology and psychosis-like behaviors. First, we used whole-cell patch-clamp recordings to measure the physiological changes in hippocampal subfields and cFos immunohistochemistry to examine cellular excitability. DG-GluN1 KO mice show CA3 cellular hyperactivity, detected using two approaches: (1) increased excitatory glutamate transmission at mossy fibers (MF)-CA3 synapses, and (2) an increased number of cFos-activated pyramidal neurons in CA3, an outcome that appears to project downstream to CA1 and basolateral amygdala (BLA). Furthermore, we examined psychosis-like behaviors and pathological memory processing; these show an increase in fear conditioning (FC), a reduction in prepulse inhibition (PPI) in the KO animal, along with a deterioration in memory accuracy with Morris Water Maze (MWM) and reduced social memory (SM). Moreover, with DREADD vectors, we demonstrate a remarkably similar behavioral profile when we induce CA3 hyperactivity. These hippocampal subfield changes could provide the basis for the observed increase in human hippocampal activity in SzP, based on the shared DG-specific GluN1 reduction. With further characterization, these animal model systems may serve as targets to test psychosis mechanisms related to hippocampus and assess potential hippocampus-directed treatments.


Asunto(s)
Región CA3 Hipocampal/fisiopatología , Giro Dentado/metabolismo , Proteínas del Tejido Nervioso/deficiencia , Trastornos Psicóticos/fisiopatología , Receptores de N-Metil-D-Aspartato/deficiencia , Animales , Región CA3 Hipocampal/citología , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Células Piramidales
6.
Hippocampus ; 29(8): 726-735, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-30779299

RESUMEN

Dentate gyrus adult neurogenesis is implicated in the formation of hippocampal-dependent contextual associations. However, the role of adult neurogenesis during reward-based context-dependent paradigms-such as conditioned place preference (CPP)-is understudied. Therefore, we used image-guided, hippocampal-targeted X-ray irradiation (IG-IR) and morphine CPP to explore whether dentate gyrus adult neurogenesis plays a role in reward memories created in adult C57BL/6J male mice. In addition, as adult neurogenesis appears to participate to a greater extent in retrieval and extinction of recent (<48 hr posttraining) versus remote (>1 week posttraining) memories, we specifically examined the role of adult neurogenesis in reward-associated contextual memories probed at recent and remote timepoints. Six weeks post-IG-IR or Sham treatment, mice underwent morphine CPP. Using separate groups, retrieval of recent and remote reward memories was found to be similar between IG-IR and Sham treatments. Interestingly, IG-IR mice showed impaired extinction-or increased persistence-of the morphine-associated reward memory when it was probed 24-hr (recent) but not 3-weeks (remote) postconditioning relative to Sham mice. Taken together, these data show that hippocampal-directed irradiation and the associated decrease in dentate gyrus adult neurogenesis affect the persistence of recently-but not remotely-probed reward memory. These data indicate a novel role for adult neurogenesis in reward-based memories and particularly the extinction rate of these memories. Consideration of this work may lead to better understanding of extinction-based behavioral interventions for psychiatric conditions characterized by dysregulated reward processing.


Asunto(s)
Giro Dentado/fisiología , Extinción Psicológica/fisiología , Memoria/fisiología , Morfina/administración & dosificación , Narcóticos/administración & dosificación , Neurogénesis/fisiología , Recompensa , Animales , Irradiación Craneana/métodos , Giro Dentado/efectos de los fármacos , Giro Dentado/efectos de la radiación , Extinción Psicológica/efectos de los fármacos , Extinción Psicológica/efectos de la radiación , Masculino , Memoria/efectos de los fármacos , Memoria/efectos de la radiación , Ratones , Neurogénesis/efectos de los fármacos , Neurogénesis/efectos de la radiación , Neuronas/efectos de los fármacos , Neuronas/patología , Neuronas/efectos de la radiación
7.
Autism Res ; 11(2): 234-244, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-29028156

RESUMEN

Neuroligin-3 (NLGN3) is a postsynaptic cell adhesion protein that interacts with presynaptic ligands including neurexin-1 (NRXN1) [Ichtchenko et al., Journal of Biological Chemistry, 271, 2676-2682, 1996]. Mice harboring a mutation in the NLGN3 gene (NL3R451C) mimicking a mutation found in two brothers with autism spectrum disorder (ASD) were previously generated and behaviorally phenotyped for autism-related behaviors. In these NL3R451C mice generated and tested on a hybrid C57BL6J/129S2/SvPasCrl background, we observed enhanced spatial memory and reduced social interaction [Tabuchi et al., Science, 318, 71-76, 2007]. Curiously, an independently generated second line of mice harboring the same mutation on a C57BL6J background exhibited minimal aberrant behavior, thereby providing apparently discrepant results. To investigate the origin of the discrepancy, we previously replicated the original findings of Tabuchi et al. by studying the same NL3R451C mutation on a pure 129S2/SvPasCrl genetic background. Here we complete the behavioral characterization of the NL3R451C mutation on a pure C57BL6J genetic background to determine if background genetics play a role in the discrepant behavioral outcomes involving NL3R451C mice. NL3R451C mutant mice on a pure C57BL6J background did not display spatial memory enhancements or social interaction deficits. We only observed a decreased startle response and mildly increased locomotor activity in these mice suggesting that background genetics influences behavioral outcomes involving the NL3R451C mutation. Autism Res 2018, 11: 234-244. © 2017 International Society for Autism Research, Wiley Periodicals, Inc. LAY SUMMARY: Behavioral symptoms of autism can be highly variable, even in cases that involve identical genetic mutations. Previous studies in mice with a mutation of the Neuroligin-3 gene showed enhanced learning and social deficits. We replicated these findings on the same and different genetic backgrounds. In this study, however, the same mutation in mice on a different genetic background did not reproduce our previous findings. Our results suggest that genetic background influences behavioral symptoms of this autism-associated mutation.


Asunto(s)
Trastorno del Espectro Autista/genética , Moléculas de Adhesión Celular Neuronal/genética , Proteínas de la Membrana/genética , Proteínas del Tejido Nervioso/genética , Problema de Conducta/psicología , Animales , Trastorno del Espectro Autista/psicología , Modelos Animales de Enfermedad , Femenino , Antecedentes Genéticos , Relaciones Interpersonales , Aprendizaje/fisiología , Masculino , Recuerdo Mental/fisiología , Ratones , Ratones Endogámicos C57BL , Ratones Mutantes , Mutación , Fenotipo , Reflejo de Sobresalto/genética , Aprendizaje Espacial/fisiología
8.
Nat Commun ; 8(1): 1668, 2017 11 21.
Artículo en Inglés | MEDLINE | ID: mdl-29162814

RESUMEN

Adult neurogenesis persists in the rodent dentate gyrus and is stimulated by chronic treatment with conventional antidepressants through BDNF/TrkB signaling. Ketamine in low doses produces both rapid and sustained antidepressant effects in patients. Previous studies have shed light on post-transcriptional synaptic NMDAR mediated mechanisms underlying the acute effect, but how ketamine acts at the cellular level to sustain this anti-depressive function for prolonged periods remains unclear. Here we report that ketamine accelerates differentiation of doublecortin-positive adult hippocampal neural progenitors into functionally mature neurons. This process requires TrkB-dependent ERK pathway activation. Genetic ablation of TrkB in neural stem/progenitor cells, or pharmacologic disruption of ERK signaling, or inhibition of adult neurogenesis, each blocks the ketamine-induced behavioral responses. Conversely, enhanced ERK activity via Nf1 gene deletion extends the response and rescues both neurogenic and behavioral deficits in mice lacking TrkB. Thus, TrkB-dependent neuronal differentiation is involved in the sustained antidepressant effects of ketamine.


Asunto(s)
Diferenciación Celular/efectos de los fármacos , Ketamina/farmacología , Células-Madre Neurales/metabolismo , Receptor trkB/metabolismo , Analgésicos/farmacología , Animales , Conducta Animal/efectos de los fármacos , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Femenino , Hipocampo/citología , Masculino , Ratones de la Cepa 129 , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Células-Madre Neurales/citología , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Neuronas/fisiología , Receptor trkB/genética
9.
J Neurosci ; 37(45): 10917-10931, 2017 11 08.
Artículo en Inglés | MEDLINE | ID: mdl-28978667

RESUMEN

Genetic perturbations of the transcription factor Forkhead Box P1 (FOXP1) are causative for severe forms of autism spectrum disorder that are often comorbid with intellectual disability. Recent work has begun to reveal an important role for FoxP1 in brain development, but the brain-region-specific contributions of Foxp1 to autism and intellectual disability phenotypes have yet to be determined fully. Here, we describe Foxp1 conditional knock-out (Foxp1cKO) male and female mice with loss of Foxp1 in the pyramidal neurons of the neocortex and the CA1/CA2 subfields of the hippocampus. Foxp1cKO mice exhibit behavioral phenotypes that are of potential relevance to autism spectrum disorder, including hyperactivity, increased anxiety, communication impairments, and decreased sociability. In addition, Foxp1cKO mice have gross deficits in learning and memory tasks of relevance to intellectual disability. Using a genome-wide approach, we identified differentially expressed genes in the hippocampus of Foxp1cKO mice associated with synaptic function and development. Furthermore, using magnetic resonance imaging, we uncovered a significant reduction in the volumes of both the entire hippocampus as well as individual hippocampal subfields of Foxp1cKO mice. Finally, we observed reduced maintenance of LTP in area CA1 of the hippocampus in these mutant mice. Together, these data suggest that proper expression of Foxp1 in the pyramidal neurons of the forebrain is important for regulating gene expression pathways that contribute to specific behaviors reminiscent of those seen in autism and intellectual disability. In particular, Foxp1 regulation of gene expression appears to be crucial for normal hippocampal development, CA1 plasticity, and spatial learning.SIGNIFICANCE STATEMENT Loss-of-function mutations in the transcription factor Forkhead Box P1 (FOXP1) lead to autism spectrum disorder and intellectual disability. Understanding the potential brain-region-specific contributions of FOXP1 to disease-relevant phenotypes could be a critical first step in the management of patients with these mutations. Here, we report that Foxp1 conditional knock-out (Foxp1cKO) mice with loss of Foxp1 in the neocortex and hippocampus display autism and intellectual-disability-relevant behaviors. We also show that these phenotypes correlate with changes in both the genomic and physiological profiles of the hippocampus in Foxp1cKO mice. Our work demonstrates that brain-region-specific FOXP1 expression may relate to distinct, clinically relevant phenotypes.


Asunto(s)
Factores de Transcripción Forkhead/genética , Factores de Transcripción Forkhead/fisiología , Expresión Génica/genética , Expresión Génica/fisiología , Plasticidad Neuronal/genética , Plasticidad Neuronal/fisiología , Células Piramidales/fisiología , Proteínas Represoras/genética , Proteínas Represoras/fisiología , Aprendizaje Espacial/fisiología , Sinapsis/fisiología , Animales , Trastorno del Espectro Autista , Conducta Animal/fisiología , Región CA1 Hipocampal/fisiología , Femenino , Discapacidades para el Aprendizaje/genética , Discapacidades para el Aprendizaje/psicología , Masculino , Trastornos de la Memoria/genética , Trastornos de la Memoria/psicología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Neocórtex/citología , Neocórtex/fisiología , Células Piramidales/metabolismo , Vocalización Animal/fisiología
10.
Dev Biol ; 431(2): 179-193, 2017 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-28947178

RESUMEN

While several studies indicate the importance of ephrin-B/EphB bidirectional signaling in excitatory neurons, potential roles for these molecules in inhibitory neurons are largely unknown. We identify here an autonomous receptor-like role for ephrin-B reverse signaling in the tangential migration of interneurons into the neocortex using ephrin-B (EfnB1/B2/B3) conditional triple mutant (TMlz) mice and a forebrain inhibitory neuron specific Cre driver. Inhibitory neuron deletion of the three EfnB genes leads to reduced interneuron migration, abnormal cortical excitability, and lethal audiogenic seizures. Truncated and intracellular point mutations confirm the importance of ephrin-B reverse signaling in interneuron migration and cortical excitability. A non-autonomous ligand-like role was also identified for ephrin-B2 that is expressed in neocortical radial glial cells and required for proper tangential migration of GAD65-positive interneurons. Our studies thus define both receptor-like and ligand-like roles for the ephrin-B molecules in controlling the migration of interneurons as they populate the neocortex and help establish excitatory/inhibitory (E/I) homeostasis.


Asunto(s)
Movimiento Celular , Efrinas/metabolismo , Interneuronas/citología , Interneuronas/metabolismo , Animales , Femenino , Eliminación de Gen , Ligandos , Ratones , Modelos Biológicos , Mutación/genética , Neocórtex/citología , Neocórtex/metabolismo , Inhibición Neural , Prosencéfalo/citología , Prosencéfalo/metabolismo , Seudópodos/metabolismo
11.
Elife ; 62017 07 11.
Artículo en Inglés | MEDLINE | ID: mdl-28695822

RESUMEN

Sequencing studies have implicated haploinsufficiency of ARID1B, a SWI/SNF chromatin-remodeling subunit, in short stature (Yu et al., 2015), autism spectrum disorder (O'Roak et al., 2012), intellectual disability (Deciphering Developmental Disorders Study, 2015), and corpus callosum agenesis (Halgren et al., 2012). In addition, ARID1B is the most common cause of Coffin-Siris syndrome, a developmental delay syndrome characterized by some of the above abnormalities (Santen et al., 2012; Tsurusaki et al., 2012; Wieczorek et al., 2013). We generated Arid1b heterozygous mice, which showed social behavior impairment, altered vocalization, anxiety-like behavior, neuroanatomical abnormalities, and growth impairment. In the brain, Arid1b haploinsufficiency resulted in changes in the expression of SWI/SNF-regulated genes implicated in neuropsychiatric disorders. A focus on reversible mechanisms identified Insulin-like growth factor (IGF1) deficiency with inadequate compensation by Growth hormone-releasing hormone (GHRH) and Growth hormone (GH), underappreciated findings in ARID1B patients. Therapeutically, GH supplementation was able to correct growth retardation and muscle weakness. This model functionally validates the involvement of ARID1B in human disorders, and allows mechanistic dissection of neurodevelopmental diseases linked to chromatin-remodeling.


Asunto(s)
Discapacidades del Desarrollo/genética , Haploinsuficiencia , Trastornos Mentales/genética , Factores de Transcripción/deficiencia , Animales , Conducta Animal , Encéfalo/patología , Discapacidades del Desarrollo/fisiopatología , Modelos Animales de Enfermedad , Regulación de la Expresión Génica , Hormona Liberadora de Hormona del Crecimiento/metabolismo , Heterocigoto , Factor I del Crecimiento Similar a la Insulina/metabolismo , Trastornos Mentales/fisiopatología , Ratones , Proteínas Serina-Treonina Quinasas/metabolismo
12.
J Biol Chem ; 291(22): 11647-56, 2016 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-27008863

RESUMEN

The biological underpinnings and the pathological lesions of psychiatric disorders are centuries-old questions that have yet to be understood. Recent studies suggest that schizophrenia and related disorders likely have their origins in perturbed neurodevelopment and can result from a large number of common genetic variants or multiple, individually rare genetic alterations. It is thus conceivable that key neurodevelopmental pathways underline the various genetic changes and the still unknown pathological lesions in schizophrenia. Here, we report that mice defective of the nicastrin subunit of γ-secretase in oligodendrocytes have hypomyelination in the central nervous system. These mice have altered dopamine signaling and display profound abnormal phenotypes reminiscent of schizophrenia. In addition, we identify an association of the nicastrin gene with a human schizophrenia cohort. These observations implicate γ-secretase and its mediated neurodevelopmental pathways in schizophrenia and provide support for the "myelination hypothesis" of the disease. Moreover, by showing that schizophrenia and obsessive-compulsive symptoms could be modeled in animals wherein a single genetic factor is altered, our work provides a biological basis that schizophrenia with obsessive-compulsive disorder is a distinct subtype of schizophrenia.


Asunto(s)
Secretasas de la Proteína Precursora del Amiloide/metabolismo , Conducta Compulsiva , Glicoproteínas de Membrana/metabolismo , Vaina de Mielina/metabolismo , Oligodendroglía/metabolismo , Esquizofrenia/metabolismo , Secretasas de la Proteína Precursora del Amiloide/genética , Animales , Femenino , Humanos , Masculino , Glicoproteínas de Membrana/genética , Ratones , Ratones Noqueados , Persona de Mediana Edad , Esquizofrenia/genética
13.
Mol Cell Biol ; 36(1): 70-83, 2016 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-26459759

RESUMEN

Synapse development requires normal neuronal activities and the precise expression of synapse-related genes. Dysregulation of synaptic genes results in neurological diseases such as autism spectrum disorders (ASD). Mutations in genes encoding chromatin-remodeling factor Brg1/SmarcA4 and its associated proteins are the genetic causes of several developmental diseases with neurological defects and autistic symptoms. Recent large-scale genomic studies predicted Brg1/SmarcA4 as one of the key nodes of the ASD gene network. We report that Brg1 deletion in early postnatal hippocampal neurons led to reduced dendritic spine density and maturation and impaired synapse activities. In developing mice, neuronal Brg1 deletion caused severe neurological defects. Gene expression analyses indicated that Brg1 regulates a significant number of genes known to be involved in synapse function and implicated in ASD. We found that Brg1 is required for dendritic spine/synapse elimination mediated by the ASD-associated transcription factor myocyte enhancer factor 2 (MEF2) and that Brg1 regulates the activity-induced expression of a specific subset of genes that overlap significantly with the targets of MEF2. Our analyses showed that Brg1 interacts with MEF2 and that MEF2 is required for Brg1 recruitment to target genes in response to neuron activation. Thus, Brg1 plays important roles in both synapse development/maturation and MEF2-mediated synapse remodeling. Our study reveals specific functions of the epigenetic regulator Brg1 in synapse development and provides insights into its role in neurological diseases such as ASD.


Asunto(s)
ADN Helicasas/metabolismo , Factores de Transcripción MEF2/metabolismo , Neuronas/metabolismo , Proteínas Nucleares/metabolismo , Sinapsis/metabolismo , Factores de Transcripción/metabolismo , Animales , Trastorno Autístico/genética , Trastorno Autístico/metabolismo , Cromatina/metabolismo , ADN Helicasas/genética , Espinas Dendríticas/genética , Hipocampo/metabolismo , Factores de Transcripción MEF2/genética , Ratones , Proteínas del Tejido Nervioso/metabolismo , Proteínas Nucleares/genética , Factores de Transcripción/genética
14.
Mol Genet Metab ; 116(1-2): 98-105, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25982063

RESUMEN

The neuronal ceroid lipofuscinoses (NCLs) are a group of related hereditary lysosomal storage disorders characterized by progressive loss of neurons in the central nervous system resulting in dementia, loss of motor skills, seizures and blindness. A characteristic intralysosomal accumulation of autofluorescent storage material occurs in the brain and other tissues. Three major forms and nearly a dozen minor forms of NCL are recognized. Infantile-onset NCL (CLN1 disease) is caused by severe deficiency in a soluble lysosomal enzyme, palmitoyl-protein thioesterase-1 (PPT1) and no therapy beyond supportive care is available. Homozygous Ppt1 knockout mice reproduce the known features of the disease, developing signs of motor dysfunction at 5 months of age and death around 8 months. Direct delivery of lysosomal enzymes to the cerebrospinal fluid is an approach that has gained traction in small and large animal models of several other neuropathic lysosomal storage diseases, and has advanced to clinical trials. In the current study, Ppt1 knockout mice were treated with purified recombinant human PPT1 enzyme delivered to the lumbar intrathecal space on each of three consecutive days at 6 weeks of age. Untreated PPT1 knockout mice and wild-type mice served as additional controls. Four enzyme concentration levels (0, 2.6, 5.3 and 10.6 mg/ml of specific activity 20 U/mg) were administered in a volume of 80 µl infused over 8 min. Each group consisted of 16-20 mice. The treatment was well tolerated. Disease-specific survival was 233, 267, 272, and 284days for each of the four treatment groups, respectively, and the effect of treatment was highly significant (p<0.0001). The timing of motor deterioration was also delayed. Neuropathology was improved as evidenced by decreased autofluorescent storage material in the spinal cord and a decrease in CD68 staining in the cortex and spinal cord. The improvements in motor function and survival are similar to results reported for preclinical studies involving other lysosomal storage disorders, such as CLN2/TPP1 deficiency, for which intraventricular ERT is being offered in clinical trials. If ERT delivery to the CSF proves to be efficacious in these disorders, PPT1 deficiency may also be amenable to this approach.


Asunto(s)
Modelos Animales de Enfermedad , Terapia de Reemplazo Enzimático , Proteínas de la Membrana/uso terapéutico , Movimiento (Física) , Lipofuscinosis Ceroideas Neuronales/tratamiento farmacológico , Animales , Encéfalo/efectos de los fármacos , Encéfalo/inmunología , Encéfalo/patología , Supervivencia sin Enfermedad , Relación Dosis-Respuesta a Droga , Humanos , Inyecciones Espinales , Proteínas de la Membrana/farmacología , Ratones Endogámicos C57BL , Ratones Noqueados , Proteínas Recombinantes/farmacología , Proteínas Recombinantes/uso terapéutico , Tioléster Hidrolasas/genética , Tripeptidil Peptidasa 1
15.
Hippocampus ; 25(11): 1374-9, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25786918

RESUMEN

CA1 hippocampal N-methyl-d-aspartate-receptors (NMDARs) are necessary for contextually related learning and memory processes. Extinction, a form of learning, has been shown to require intact hippocampal NMDAR signalling. Renewal of fear expression can occur after fear extinction training, when the extinguished fear stimulus is presented in an environmental context different from the training context and thus, renewal is dependent on contextual memory. In this study, we show that a Grin1 knock-out (loss of the essential NR1 subunit for the NMDAR) restricted to the bilateral CA1 subfield of the dorsal hippocampus does not affect acquisition of learned fear, but does attenuate extinction of a cued fear response even when presented in the extinction-training context. We propose that failure to remember the (safe) extinction context is responsible for the abnormal fear response and suggest it is a dysfunctional renewal. The results highlight the difference in outcome of extinguished fear memory resulting from a partial rather than complete loss of function of the hippocampus and suggest a potential mechanism for abnormally increased fear expression in PTSD.


Asunto(s)
Conducta Animal/fisiología , Región CA1 Hipocampal/fisiopatología , Extinción Psicológica/fisiología , Miedo/fisiología , Proteínas del Tejido Nervioso/fisiología , Receptores de N-Metil-D-Aspartato/fisiología , Animales , Señales (Psicología) , Modelos Animales de Enfermedad , Ratones , Ratones Noqueados , Proteínas del Tejido Nervioso/genética , Receptores de N-Metil-D-Aspartato/genética , Trastornos por Estrés Postraumático/fisiopatología
16.
Nat Commun ; 6: 6606, 2015 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-25808087

RESUMEN

Acute seizures after a severe brain insult can often lead to epilepsy and cognitive impairment. Aberrant hippocampal neurogenesis follows the insult but the role of adult-generated neurons in the development of chronic seizures or associated cognitive deficits remains to be determined. Here we show that the ablation of adult neurogenesis before pilocarpine-induced acute seizures in mice leads to a reduction in chronic seizure frequency. We also show that ablation of neurogenesis normalizes epilepsy-associated cognitive deficits. Remarkably, the effect of ablating adult neurogenesis before acute seizures is long lasting as it suppresses chronic seizure frequency for nearly 1 year. These findings establish a key role of neurogenesis in chronic seizure development and associated memory impairment and suggest that targeting aberrant hippocampal neurogenesis may reduce recurrent seizures and restore cognitive function following a pro-epileptic brain insult.


Asunto(s)
Trastornos del Conocimiento/fisiopatología , Epilepsia del Lóbulo Temporal/fisiopatología , Hipocampo/crecimiento & desarrollo , Neurogénesis/genética , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Trastornos del Conocimiento/inducido químicamente , Trastornos del Conocimiento/etiología , Modelos Animales de Enfermedad , Proteínas de Dominio Doblecortina , Epilepsia/inducido químicamente , Epilepsia/complicaciones , Epilepsia/fisiopatología , Epilepsia del Lóbulo Temporal/inducido químicamente , Epilepsia del Lóbulo Temporal/complicaciones , Hipocampo/metabolismo , Hipocampo/fisiopatología , Inmunohistoquímica , Ratones , Ratones Transgénicos , Proteínas Asociadas a Microtúbulos/metabolismo , Agonistas Muscarínicos/toxicidad , Proteínas del Tejido Nervioso/metabolismo , Células-Madre Neurales , Neurogénesis/fisiología , Neuronas/metabolismo , Neuropéptidos/metabolismo , Pilocarpina/toxicidad
17.
Hippocampus ; 25(4): 409-14, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25424867

RESUMEN

Addiction has been proposed to emerge from associations between the drug and the reward-associated contexts. This associative learning has a cellular correlate, as there are more cFos+ neurons in the hippocampal dentate gyrus (DG) after psychostimulant conditioned place preference (CPP) versus saline controls. However, it is unknown whether morphine CPP leads to a similar DG activation, or whether DG activation is due to locomotion, handling, pharmacological effects, or-as data from contextual fear learning suggests-exposure to the drug-associated context. To explore this, we employed an unbiased, counterbalanced, and shortened CPP design that led to place preference and more DG cFos+ cells. Next, mice underwent morphine CPP but were then sequestered into the morphine-paired (conditioned stimulus+ [CS+]) or saline-paired (CS-) context on test day. Morphine-paired mice sequestered to CS+ had ∼30% more DG cFos+ cells than saline-paired mice. Furthermore, Bregma analysis revealed morphine-paired mice had more cFos+ cells in CS+ compared to CS- controls. Notably, there was no significant difference in DG cFos+ cell number after handling alone or after receiving morphine in home cage. Thus, retrieval of morphine-associated context is accompanied by activation of hippocampal DG granule cell neurons.


Asunto(s)
Giro Dentado/citología , Recuerdo Mental/efectos de los fármacos , Morfina/administración & dosificación , Narcóticos/administración & dosificación , Neuronas/efectos de los fármacos , Proteínas Proto-Oncogénicas c-fos/metabolismo , Análisis de Varianza , Animales , Condicionamiento Operante/efectos de los fármacos , Condicionamiento Operante/fisiología , Regulación de la Expresión Génica/efectos de los fármacos , Regulación de la Expresión Génica/fisiología , Ratones , Factores de Tiempo
18.
Neuron ; 82(3): 645-58, 2014 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-24811383

RESUMEN

Repeated cocaine exposure causes persistent, maladaptive alterations in brain and behavior, and hope for effective therapeutics lies in understanding these processes. We describe here an essential role for fragile X mental retardation protein (FMRP), an RNA-binding protein and regulator of dendritic protein synthesis, in cocaine conditioned place preference, behavioral sensitization, and motor stereotypy. Cocaine reward deficits in FMRP-deficient mice stem from elevated mGluR5 (or GRM5) function, similar to a subset of fragile X symptoms, and do not extend to natural reward. We find that FMRP functions in the adult nucleus accumbens (NAc), a critical addiction-related brain region, to mediate behavioral sensitization but not cocaine reward. FMRP-deficient mice also exhibit several abnormalities in NAc medium spiny neurons, including reduced presynaptic function and premature changes in dendritic morphology and glutamatergic neurotransmission following repeated cocaine treatment. Together, our findings reveal FMRP as a critical mediator of cocaine-induced behavioral and synaptic plasticity.


Asunto(s)
Cocaína/administración & dosificación , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/fisiología , Plasticidad Neuronal/efectos de los fármacos , Plasticidad Neuronal/fisiología , Sinapsis/efectos de los fármacos , Sinapsis/fisiología , Animales , Condicionamiento Psicológico/efectos de los fármacos , Condicionamiento Psicológico/fisiología , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Actividad Motora/efectos de los fármacos , Actividad Motora/fisiología , Autoadministración
19.
Autism Res ; 7(2): 264-72, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24619977

RESUMEN

Multiple candidate genes have been identified for autism spectrum disorders. While some of these genes reach genome-wide significance, others, such as the R451C point mutation in the synaptic cell adhesion molecule neuroligin-3, appear to be rare. Interestingly, two brothers with the same R451C point mutation in neuroligin-3 present clinically on seemingly disparate sides of the autism spectrum. These clinical findings suggest genetic background may play a role in modifying the penetrance of a particular autism-associated mutation. Animal models may contribute additional support for such mutations as functionally relevant and can provide mechanistic insights. Previously, in collaboration with the Südhof laboratory, we reported that mice with an R451C substitution in neuroligin-3 displayed social deficits and enhanced spatial learning. While some of these behavioral abnormalities have since been replicated independently in the Südhof laboratory, observations from the Crawley laboratory failed to replicate these findings in a similar neuroligin-3 mutant mouse model and suggested that genetic background may contribute to variation in observations across laboratories. Therefore, we sought to replicate our findings in the neuroligin-3 R451C point mutant knock-in mouse model (NL3R451C) in a different genetic background. We backcrossed our NL3R451C mouse line onto a 129S2/SvPasCrl genetic background and repeated a subset of our previous behavioral testing. NL3R451C mice on a 129S2/SvPasCrl displayed social deficits, enhanced spatial learning, and increased locomotor activity. These data extend our previous findings that NL3R451C mice exhibit autism-relevant behavioral abnormalities and further suggest that different genetic backgrounds can modify this behavioral phenotype through epistatic genetic interactions.


Asunto(s)
Moléculas de Adhesión Celular Neuronal/genética , Trastornos Generalizados del Desarrollo Infantil/genética , Análisis Mutacional de ADN , Proteínas de la Membrana/genética , Proteínas del Tejido Nervioso/genética , Mutación Puntual/genética , Conducta Social , Aprendizaje Espacial , Animales , Femenino , Estudios de Asociación Genética , Masculino , Ratones , Ratones Noqueados , Modelos Genéticos
20.
Autism Res ; 7(1): 60-71, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24408886

RESUMEN

Fragile X syndrome (FXS) is the most common form of inherited mental retardation and the leading cause of autism. FXS is caused by mutation in a single gene, FMR1, which encodes an RNA-binding protein FMRP. FMRP is highly expressed in neurons and is hypothesized to have a role in synaptic structure, function, and plasticity by regulating mRNAs that encode pre- and post-synaptic proteins. Fmr1 knockout (KO) mice have been used as a model to study FXS. These mice have been reported to show a great degree of phenotypic variability based on the genetic background, environmental signals, and experimental methods. In this study, we sought to restrict FMRP deletion to two brain regions that have been implicated in FXS and autism. We show that ablating Fmr1 in differentiated neurons of hippocampus and cortex results in dendritic alterations and changes in synaptic marker intensity that are brain region specific. In our conditional mutant mice, FMRP-deleted neurons have activated AKT-mTOR pathway signaling in hippocampus but display no apparent behavioral phenotypes. These results highlight the importance of identifying additional factors that interact with Fmr1 to develop FXS.


Asunto(s)
Diferenciación Celular/genética , Corteza Cerebral/metabolismo , Corteza Cerebral/patología , Deleción Cromosómica , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/genética , Hipocampo/metabolismo , Hipocampo/patología , Mitosis/genética , Animales , Conducta Animal/fisiología , Dendritas/genética , Dendritas/patología , Síndrome del Cromosoma X Frágil/genética , Síndrome del Cromosoma X Frágil/patología , Ratones , Ratones Noqueados , Ratones Mutantes Neurológicos , Neuronas/metabolismo , Neuronas/patología , Fenotipo , Proteínas Proto-Oncogénicas c-akt/genética , Valores de Referencia , Transducción de Señal/genética , Sinapsis/genética , Sinapsis/patología , Serina-Treonina Quinasas TOR/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA