Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-38602190

RESUMEN

Hydrophilic anti-icing coatings can be energy-effective passive solutions for combating ice accretion and reducing ice adhesion. However, their underlying mechanisms of action remain inferential and are ill-defined from a molecular perspective. Here, we systematically investigate the influence of the counterion identity on the shear ice adhesion strength to cationic polymer coatings having quaternary alkyl ammonium moieties as chargeable groups. Temperature-dependent molecular information on the hydrated polymer films is obtained using total internal reflection (TIR) Raman spectroscopy, complemented with differential scanning calorimetry (DSC) and ellipsometry. Ice adhesion measurements show a pronounced counterion-specific behavior with a sharp increase in adhesion at temperatures that depend on the anion identity, following the order Cl- < F- < SCN- < Br- < I-. Linked to the freezing of hydration water, the specific ordering results from differences in ion pairing and the amount of water present within the polymer film. Moreover, similar effects can be promoted by varying the cross-linking density in the coating while keeping the anion identity fixed. These findings shed new light on low ice adhesion mechanisms and may inspire novel approaches for improved anti-icing coatings.

2.
Soft Matter ; 19(23): 4360-4368, 2023 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-37255462

RESUMEN

Biomaterial-associated thrombosis remains a persistent challenge whenever medical devices are inserted in blood vessels. The issue is principally addressed by the development of antithrombogenic coatings that prevent the formation of blood clots, e.g. by limiting adsorption of fibrin - the core protein network of a clot. Charged polymers (i.e. polyelectrolytes and zwitterionic polymers) show potential as coating materials for medical devices, and we here investigate these polymer coatings in the context of biomaterial-associated thrombosis. Our findings indicate that fibrin polymerization can yield a surface-dependent distribution of fractal-like branched structures and amorphous aggregates, with surface-induced fibrin formation dominating for anionic polymer interfaces and recruitment of bulk-formed fibrin dominating for cationic polymer interfaces. In addition, we identify coatings containing zwitterionic sulfobetaine groups as promising candidates for antithrombogenic biomaterials.


Asunto(s)
Polímeros , Trombosis , Humanos , Polímeros/química , Fibrina , Fractales , Materiales Biocompatibles
3.
Langmuir ; 39(4): 1456-1464, 2023 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-36656651

RESUMEN

In this study, we systematically investigate the interactions between mobile ions generated from added salts and immobile charges within a sulfobetaine-based polyzwitterionic film in the presence of five salts (KCl, KBr, KSCN, LiCl, and CsCl). The sulfobetaine groups contain quaternary alkylammonium and sulfonate groups, giving the positive and negative charges. The swelling of the zwitterionic film in the presence of different salts is compared with the swelling behavior of a polycationic or polyanionic film containing the same charged groups. For such a comparative study, we design cross-linked terpolymer films with similar thicknesses, cross-link densities, and charge fractions, but with varying charged moieties. While the addition of salt in general leads to a collapse of both cationic and anionic films, the presence of specific types of mobile anions (Cl-, Br-, and SCN-) considerably influences the swelling behavior of polycationic films. We attribute this observation to a different degree of ion-pair formations between the different types of anionic counterions and the immobile cationic quaternary alkylammonium groups in the films where highly polarizable counterions such as SCN- lead to a high degree of ion pairing and less polarizable counterions, such as Cl-, cause a low degree of ion pairing. Conversely, we do not observe any substantial effect of varying the type of cationic counterions (K+, Li+, and Cs+), which we assign to the lack of ion pairing between the weakly polarizable cations and the immobile anionic sulfonate groups in the films. In addition, we observe that the zwitterionic films swell with increasing ionic strength and the degree of swelling is anion dependent, which is in agreement with previous reports on the "antipolyelectrolyte effect". Herein, we explain this ion-specific swelling behavior with the different cation and anion abilities to form ion pairs with quaternary alkylammonium and sulfonate in the sulfobetaine groups.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...