Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Craniomaxillofac Surg ; 52(4): 420-431, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38461138

RESUMEN

The study aimed to evaluate and discuss the use of an innovative PSI made of porous hydroxyapatite, with interconnected porosity promoting osteointegration, called MyBone Custom® implant (MBCI), for maxillofacial bone reconstruction. A multicentric cohort of 13 patients underwent maxillofacial bone reconstruction surgery using MBCIs for various applications, from genioplasty to orbital floor reconstruction, including zygomatic and mandibular bone reconstruction, both for segmental defects and bone augmentation. The mean follow-up period was 9 months (1-22 months). No infections, displacements, or postoperative fractures were reported. Perioperative modifications of the MBCIs were possible when necessary. Additionally, surgeons reported significant time saved during surgery. For patients with postoperative CT scans, osteointegration signs were visible at the 6-month postoperative follow-up control, and continuous osteointegration was observed after 1 year. The advantages and disadvantages compared with current techniques used are discussed. MBCIs offer new bone reconstruction possibilities with long-term perspectives, while precluding the drawbacks of titanium and PEEK. The low level of postoperative complications associated with the high osteointegration potential of MBCIs paves the way to more extensive use of this new hydroxyapatite PSI in maxillofacial bone reconstruction.


Asunto(s)
Implantes Dentales , Procedimientos de Cirugía Plástica , Humanos , Durapatita/uso terapéutico , Tomografía Computarizada por Rayos X , Órbita
2.
Artículo en Inglés | MEDLINE | ID: mdl-38323977

RESUMEN

BACKGROUND: Customized cutting guides are technical aids that make primary pelvic bone tumor resection safer and more reliable. Although the effectiveness of such devices appears to be widely accepted, their conception and design remain varied. Two main designs have been reported: the heavier block-type customized cutting guides and the lighter patch-type customized cutting guides. As recent tools, there must be more evidence regarding the impact of design on their accuracy and ergonomics. Thus, an evaluation of their respective performances appears warranted. QUESTIONS/PURPOSES: In a cadaver model, we assessed whether (1) a thinner, patch-type customized cutting guide design results in resections that are closer to the planned resections than the heavier block-type customized cutting guides, and (2) the patch-type customized cutting guide design is more ergonomic than the block-type customized cutting guide with improved usability in surgery (in terms of bulkiness, ease of placement, primary and secondary stability, and stability during cutting). METHODS: We conducted an experimental study involving five fresh whole-body anatomic specimens (three women and two men with a median age of 79 years and median weight of 66 kg) by simulating six virtual tumors in three areas according to the Enneking classification (Zones I: iliac wing, II: periacetabular area, and I and IV: sacroiliac joint area). We compared the impact of the customized cutting guide's design on performance in terms of the resection margin accuracy using CT scan analysis (deviation from the planned margin at the closest point and the maximum deviation from the planned margin) and the intraoperative ergonomic score under conditions simulating those of an oncologic resection of a bone tumor (with a range of 0 to 100, with 100 being best). RESULTS: The patch customized cutting guides performed slightly better than the block customized cutting guides regarding deviation from the planned margin at the closest point, with median values of 1 mm versus 2 mm (difference of medians 1 mm; p = 0.02) and maximum deviation from the planned margin of 3 versus 4 mm (difference of medians 1 mm; p = 0.002). In addition, the patch design was perceived to be slightly more ergonomic than the block design, with a 92% median score versus 84% for the block design (difference of medians 8%; p = 0.03). CONCLUSION: We observed an equivalence in performance regarding accuracy and ergonomics, with slight advantages for patch customized cutting guides, especially in complex zones (Zone I and IV). Owing to a small cohort in a cadaver study, these results need independent replication. CLINICAL RELEVANCE: The patch-type customized cutting guide with thinner contact spots to the bone in specific areas and less soft tissue dissection might offer an advantage over a larger block design for achieving negative oncologic bony margins, but it does not address issues of soft tissue margins.

3.
Front Bioeng Biotechnol ; 10: 991676, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36159695

RESUMEN

Surgical cutting guides are 3D-printed customized tools that help surgeons during complex surgeries. However, there does not seem to be any set methodology for designing these patient-specific instruments. Recent publications using pelvic surgical guides showed various designs with no clearly classified or standardized features. We, thus, developed a systematic digital chain for processing multimodal medical images (CT and MRI), designing customized surgical cutting guides, and manufacturing them using additive manufacturing. The aim of this study is to describe the steps in the conception of surgical cutting guides used in complex oncological bone tumor pelvic resection. We also analyzed the duration of the surgical cutting guide process and tested its ergonomics and usability with orthopedic surgeons using Sawbones models on simulated tumors. The original digital chain made possible a repeatable design of customized tools in short times. Preliminary testing on synthetic bones showed satisfactory results in terms of design usability. The four artificial tumors (Enneking I, Enneking II, Enneking III, and Enneking I+IV) were successfully resected from the Sawbones model using this digital chain with satisfactory ergonomic outcomes. This work validates a new digital chain conception and production of surgical cutting guides. Further works with quantitative margin assessments on anatomical subjects are needed to better assess the design implications of patient-specific surgical cutting guide instruments in pelvic tumor resections.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...