Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 170
Filtrar
1.
Cryobiology ; : 104977, 2024 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-39368531

RESUMEN

Critical cooling and warming rates (CCR and CWR) are two important calorimetric properties of cryoprotective agents (CPA) solutions, and achieving these rates is generally regarded as the critical criterion for successful vitrification and rewarming. In 1996, Peyridieu et al. discovered that the measured critical rates are reduced inside kidney tissue equilibrated with 30% (w/w) 2,3-butanediol compared to its free CPA solution. In general, they found a ∼5-fold reduction for CCR and a >100-fold reduction for CWR. However, to our knowledge, no follow-up studies have been conducted. We revisit this important concept, understanding that tissues never fully equilibrate with full-strength 100% CPAs during perfusion. We therefore performed measurements in a range of dilutions of two commonly employed CPA cocktails, including 75-100% VS55 (41.25-55.00% w/v) and 90-100% VMP (48.60-54.00% w/v) equilibrated with kidney tissues vs. free solution. The measured reduction in the kidney was up to 5-fold for CCR and 9-fold for CWR. After discussing possible mechanisms for this effect, curves that fit the dilution to the observed reduction in critical rate were constructed to allow extrapolation for differentially loaded tissues, which can guide the follow-up studies to find the more concentrated CPA (> 8.4 M VMP) in the M22 family to achieve human-sized kidney vitrification and rewarming.

2.
Bioscience ; 74(8): 561-566, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39229623

RESUMEN

Earth's biodiversity is increasingly threatened and at risk. We propose a passive lunar biorepository for long-term storage of prioritized taxa of live cryopreserved samples to safeguard Earth's biodiversity and to support future space exploration and planet terraforming. Our initial focus will be on cryopreserving animal skin samples with fibroblast cells. An exemplar system has been developed using cryopreserved fish fins from the Starry Goby, Asterropteryx semipunctata. Samples will be expanded into fibroblast cells, recryopreserved, and then tested in an Earth-based laboratory for robust packaging and sensitivity to radiation. Two key factors for this biorepository are the needs to reduce damage from radiation and to maintain the samples near -196° Celsius. Certain lunar sites near the poles may meet these criteria. If possible, further testing would occur on the International Space Station prior to storage on the Moon. To secure a positive shared future, this is an open call to participate in this decades-long program.

3.
Nano Lett ; 24(37): 11567-11572, 2024 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-39230046

RESUMEN

Rewarming cryopreserved samples requires fast heating to avoid devitrification, a challenge previously attempted by magnetic nanoparticle-mediated hyperthermia. Here, we introduce Fe3O4@SiO2 nanorods as the heating elements to manipulate the heating profile to ensure safe rewarming and address the issue of uneven heating due to inhomogeneous particle distribution. The magnetic anisotropy of the nanorods allows their prealignment in the cryoprotective agent (CPA) during cooling and promotes subsequent rapid rewarming in an alternating magnetic field with the same orientation to prevent devitrification. More importantly, applying an orthogonal static magnetic field at a later stage could decelerate heating, effectively mitigating local overheating and reducing CPA toxicity. Furthermore, this orientational configuration offers more substantial heating deceleration in areas of initially higher heating rates, therefore reducing temperature variations across the sample. The efficacy of this method in regulating heating rate and improving rewarming uniformity has been validated using both gel and porcine artery models.


Asunto(s)
Nanotubos , Animales , Nanotubos/química , Porcinos , Dióxido de Silicio/química , Crioprotectores/química , Criopreservación/métodos , Calefacción , Campos Magnéticos , Calor , Nanopartículas de Magnetita/química
4.
Am J Transplant ; 2024 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-39306279

RESUMEN

Time limits on organ viability from retrieval to implantation shape the US system for human organ transplantation. Preclinical research has demonstrated that emerging biopreservation technologies can prolong organ viability, perhaps indefinitely. These technologies could transform transplantation into a scheduled procedure without geographic or time constraints, permitting organ assessment and potential preconditioning of the recipients. However, the safety and efficacy of advanced biopreservation with prolonged storage of vascularized organs followed by reanimation will require new regulatory oversight, as clinicians and transplant centers are not trained in the engineering techniques involved or equipped to assess the manipulated organs. Although the Food and Drug Administration is best situated to provide that process oversight, the agency has until now declined to oversee organ quality and has excluded vascularized organs from the oversight framework of HCT/Ps. Integration of advanced biopreservation technologies will require new facilities for organ preservation, storage, and reanimation plus ethical guidance on immediate organ use versus preservation, national allocation, and governance of centralized organ banks. Realization of the long-term benefit of advanced biopreservation requires anticipation of the necessary legal and ethical oversight tools and that process should begin now.

5.
Adv Sci (Weinh) ; 11(32): e2404617, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39031674

RESUMEN

Devising an approach to deterministically position organisms can impact various fields such as bioimaging, cybernetics, cryopreservation, and organism-integrated devices. This requires continuously assessing the locations of randomly distributed organisms to collect and transfer them to target spaces without harm. Here, an aspiration-assisted adaptive printing system is developed that tracks, harvests, and relocates living and moving organisms on target spaces via a pick-and-place mechanism that continuously adapts to updated visual and spatial information about the organisms and target spaces. These adaptive printing strategies successfully positioned a single static organism, multiple organisms in droplets, and a single moving organism on target spaces. Their capabilities are exemplified by printing vitrification-ready organisms in cryoprotectant droplets, sorting live organisms from dead ones, positioning organisms on curved surfaces, organizing organism-powered displays, and integrating organisms with materials and devices in customizable shapes. These printing strategies can ultimately lead to autonomous biomanufacturing methods to evaluate and assemble organisms for a variety of single and multi-organism-based applications.


Asunto(s)
Impresión Tridimensional , Impresión Tridimensional/instrumentación , Animales , Diseño de Equipo/métodos
6.
Nano Lett ; 24(15): 4588-4594, 2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38587406

RESUMEN

Effective thawing of cryopreserved samples requires rapid and uniform heating. This is achievable through nanowarming, an approach that heats magnetic nanoparticles by using alternating magnetic fields. Here we demonstrate the synthesis and surface modification of magnetic nanoclusters for efficient nanowarming. Magnetite (Fe3O4) nanoclusters with an optimal diameter of 58 nm exhibit a high specific absorption rate of 1499 W/g Fe under an alternating magnetic field at 43 kA/m and 413 kHz, more than twice that of commercial iron oxide cores used in prior nanowarming studies. Surface modification with a permeable resorcinol-formaldehyde resin (RFR) polymer layer significantly enhances their colloidal stability in complex cryoprotective solutions, while maintaining their excellent heating capacity. The Fe3O4@RFR nanoparticles achieved a high average heating rate of 175 °C/min in cryopreserved samples at a concentration of 10 mg Fe/mL and were successfully applied in nanowarming porcine iliac arteries, highlighting their potential for enhancing the efficacy of cryopreservation.


Asunto(s)
Calefacción , Magnetismo , Porcinos , Animales , Criopreservación , Óxido Ferrosoférrico , Campos Magnéticos
8.
Langmuir ; 2024 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-38318799

RESUMEN

There is a critical need for sorting complex materials, such as pancreatic islets of Langerhans, exocrine acinar tissues, and embryoid bodies. These materials are cell clusters, which have highly heterogeneous physical properties (such as size, shape, morphology, and deformability). Selecting such materials on the basis of specific properties can improve clinical outcomes and help advance biomedical research. In this work, we focused on sorting one such complex material, human stem cell-derived ß cell clusters (SC-ß cell clusters), by size. For this purpose, we developed a microfluidic device in which an image detection system was coupled to an actuation mechanism based on traveling surface acoustic waves (TSAWs). SC-ß cell clusters of varying size (∼100-500 µm in diameter) were passed through the sorting device. Inside the device, the size of each cluster was estimated from their bright-field images. After size identification, larger clusters, relative to the cutoff size for separation, were selectively actuated using TSAW pulses. As a result of this selective actuation, smaller and larger clusters exited the device from different outlets. At the current sample dilutions, the experimental sorting efficiency ranged between 78% and 90% for a separation cutoff size of 250 µm, yielding sorting throughputs of up to 0.2 SC-ß cell clusters/s using our proof-of-concept design. The biocompatibility of this sorting technique was also established, as no difference in SC-ß cell cluster viability due to TSAW pulse usage was found. We conclude the proof-of-concept sorting work by discussing a few ways to optimize sorting of SC-ß cell clusters for potentially higher sorting efficiency and throughput. This sorting technique can potentially help in achieving a better distribution of islets for clinical islet transplantation (a potential cure for type 1 diabetes). Additionally, the use of this technique for sorting islets can help in characterizing islet biophysical properties by size and selecting suitable islets for improved islet cryopreservation.

9.
Genetics ; 226(4)2024 04 03.
Artículo en Inglés | MEDLINE | ID: mdl-38373262

RESUMEN

Microinjection is a technique used for transgenesis, mutagenesis, cell labeling, cryopreservation, and in vitro fertilization in multiple single and multicellular organisms. Microinjection requires specialized skills and involves rate-limiting and labor-intensive preparatory steps. Here, we constructed a machine-vision guided generalized robot that fully automates the process of microinjection in fruit fly (Drosophila melanogaster) and zebrafish (Danio rerio) embryos. The robot uses machine learning models trained to detect embryos in images of agar plates and identify specific anatomical locations within each embryo in 3D space using dual view microscopes. The robot then serially performs a microinjection in each detected embryo. We constructed and used three such robots to automatically microinject tens of thousands of Drosophila and zebrafish embryos. We systematically optimized robotic microinjection for each species and performed routine transgenesis with proficiency comparable to highly skilled human practitioners while achieving up to 4× increases in microinjection throughput in Drosophila. The robot was utilized to microinject pools of over 20,000 uniquely barcoded plasmids into 1,713 embryos in 2 days to rapidly generate more than 400 unique transgenic Drosophila lines. This experiment enabled a novel measurement of the number of independent germline integration events per successfully injected embryo. Finally, we showed that robotic microinjection of cryoprotective agents in zebrafish embryos significantly improves vitrification rates and survival of cryopreserved embryos post-thaw as compared to manual microinjection. We anticipate that the robot can be used to carry out microinjection for genome-wide manipulation and cryopreservation at scale in a wide range of organisms.


Asunto(s)
Robótica , Animales , Humanos , Pez Cebra/genética , Microinyecciones/métodos , Drosophila melanogaster/genética , Animales Modificados Genéticamente
10.
ACS Sens ; 9(1): 262-271, 2024 01 26.
Artículo en Inglés | MEDLINE | ID: mdl-38190731

RESUMEN

Iron oxide nanoparticles (IONPs) have wide utility in applications from drug delivery to the rewarming of cryopreserved tissues. Due to the complex behavior of IONPs (e.g., uneven particle distribution and aggregation), further developments and clinical translation can be accelerated by having access to a noninvasive method for tissue IONP quantification. Currently, there is no low-cost method to nondestructively track IONPs in tissues across a wide range of concentrations. This work describes the performance of a low-cost, tabletop, longitudinally detected electron paramagnetic resonance (LOD-EPR) system to address this issue in the field of cryopreservation, which utilizes IONPs for rewarming of rat kidneys. A low-cost LOD-EPR system is realized via simultaneous transmit and receive using MHz continuous-wave transverse excitation with kHz modulation, which is longitudinally detected at the modulation frequency to provide both geometric and frequency isolation. The accuracy of LOD-EPR for IONP quantification is compared with NMR relaxometry. Solution measurements show excellent linearity (R2 > 0.99) versus Fe concentration for both measurements on EMG308 (a commercial nanoparticle), silica-coated EMG308, and PEG-coated EMG308 in water. The LOD-EPR signal intensity and NMR longitudinal relaxation rate constant (R1) of water are affected by particle coating, solution viscosity, and particle aggregation. R1 remains linear but with a reduced slope when in cryoprotective agent (CPA) solution, whereas the LOD-EPR signal is relatively insensitive to this. R1 does not correlate well with Fe concentration in rat kidney sections (R2 = 0.3487), while LOD-EPR does (R2 = 0.8276), with a linear regression closely matching that observed in solution and CPA.


Asunto(s)
Imagen por Resonancia Magnética , Agua , Espectroscopía de Resonancia por Spin del Electrón , Espectroscopía de Resonancia Magnética , Imagen por Resonancia Magnética/métodos , Nanopartículas Magnéticas de Óxido de Hierro
11.
Adv Sci (Weinh) ; 11(3): e2303317, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38018294

RESUMEN

Vitrification-based cryopreservation is a promising approach to achieving long-term storage of biological systems for maintaining biodiversity, healthcare, and sustainable food production. Using the "cryomesh" system achieves rapid cooling and rewarming of biomaterials, but further improvement in cooling rates is needed to increase biosystem viability and the ability to cryopreserve new biosystems. Improved cooling rates and viability are possible by enabling conductive cooling through cryomesh. Conduction-dominated cryomesh improves cooling rates from twofold to tenfold (i.e., 0.24 to 1.2 × 105  °C min-1 ) in a variety of biosystems. Higher thermal conductivity, smaller mesh wire diameter and pore size, and minimizing the nitrogen vapor barrier (e.g., vertical plunging in liquid nitrogen) are key parameters to achieving improved vitrification. Conduction-dominated cryomesh successfully vitrifies coral larvae, Drosophila embryos, and zebrafish embryos with improved outcomes. Not only a theoretical foundation for improved vitrification in µm to mm biosystems but also the capability to scale up for biorepositories and/or agricultural, aquaculture, or scientific use are demonstrated.


Asunto(s)
Vitrificación , Pez Cebra , Animales , Criopreservación , Frío , Nitrógeno
12.
Cryobiology ; 114: 104842, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-38158172

RESUMEN

In clinical practice, donor hearts are transported on ice prior to transplant and discarded if cold ischemia time exceeds ∼5 h. Methods to extend these preservation times are critically needed, and ideally, this storage time would extend indefinitely, enabling improved donor-to-patient matching, organ utilization, and immune tolerance induction protocols. Previously, we demonstrated successful vitrification and rewarming of whole rat hearts without ice formation by perfusion-loading a cryoprotective agent (CPA) solution prior to vitrification. However, these hearts did not recover any beating even in controls with CPA loading/unloading alone, which points to the chemical toxicity of the cryoprotective solution (VS55 in Euro-Collins carrier solution) as the likely culprit. To address this, we compared the toxicity of another established CPA cocktail (VEG) to VS55 using ex situ rat heart perfusion. The CPA exposure time was 150 min, and the normothermic assessment time was 60 min. Using Celsior as the carrier, we observed partial recovery of function (atria-only beating) for both VS55 and VEG. Upon further analysis, we found that the VEG CPA cocktail resulted in 50 % lower LDH release than VS55 (N = 4, p = 0.017), suggesting VEG has lower toxicity than VS55. Celsior was a better carrier solution than alternatives such as UW, as CPA + Celsior-treated hearts spent less time in cardiac arrest (N = 4, p = 0.029). While we showed substantial improvement in cardiac function after exposure to vitrifiable concentrations of CPA by improving both the CPA and carrier solution formulation, further improvements will be required before we achieve healthy cryopreserved organs for transplant.


Asunto(s)
Trasplante de Corazón , Soluciones Preservantes de Órganos , Animales , Ratas , Criopreservación/métodos , Crioprotectores/toxicidad , Trasplante de Corazón/métodos , Hielo , Soluciones Preservantes de Órganos/farmacología , Donantes de Tejidos
13.
Proc Natl Acad Sci U S A ; 120(32): e2115616120, 2023 08 08.
Artículo en Inglés | MEDLINE | ID: mdl-37494421

RESUMEN

Transfusion of red blood cells (RBCs) is one of the most valuable and widespread treatments in modern medicine. Lifesaving RBC transfusions are facilitated by the cold storage of RBC units in blood banks worldwide. Currently, RBC storage and subsequent transfusion practices are performed using simplistic workflows. More specifically, most blood banks follow the "first-in-first-out" principle to avoid wastage, whereas most healthcare providers prefer the "last-in-first-out" approach simply favoring chronologically younger RBCs. Neither approach addresses recent advances through -omics showing that stored RBC quality is highly variable depending on donor-, time-, and processing-specific factors. Thus, it is time to rethink our workflows in transfusion medicine taking advantage of novel technologies to perform RBC quality assessment. We imagine a future where lab-on-a-chip technologies utilize novel predictive markers of RBC quality identified by -omics and machine learning to usher in a new era of safer and precise transfusion medicine.


Asunto(s)
Conservación de la Sangre , Procedimientos Analíticos en Microchip , Transfusión Sanguínea/instrumentación , Transfusión Sanguínea/métodos , Humanos , Conservación de la Sangre/métodos , Dispositivos Laboratorio en un Chip , Eritrocitos , Aprendizaje Automático
14.
Ann Biomed Eng ; 51(10): 2216-2228, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37351756

RESUMEN

Vitrification could enable long-term organ preservation, but only after loading high-concentration, potentially toxic cryoprotective agents (CPAs) by perfusion. In this paper, we combine a two-compartment Krogh cylinder model with a toxicity cost function to theoretically optimize the loading of CPA (VMP) in rat kidneys as a model system. First, based on kidney perfusion experiments, we systematically derived the parameters for a CPA transport loading model, including the following: Vb = 86.0% (ra = 3.86 µm), Lp = 1.5 × 10-14 m3/(N·s), ω = 7.0 × 10-13 mol/(N·s), σ = 0.10. Next, we measured the toxicity cost function model parameters as α = 3.12 and ß = 9.39 × 10-6. Combining these models, we developed an improved kidney-loading protocol predicted to achieve vitrification while minimizing toxicity. The optimized protocol resulted in shorter exposure (25 min or 18.5% less) than the gold standard kidney-loading protocol for VMP, which had been developed based on decades of empirical practice. After testing both protocols on rat kidneys, we found comparable physical and biological outcomes. While we did not dramatically reduce toxicity, we did reduce the time. As our approach is now validated, it can be used on other organs lacking defined toxicity data to reduce CPA exposure time and provide a rapid path toward developing CPA perfusion protocols for other organs and CPAs.


Asunto(s)
Criopreservación , Vitrificación , Ratas , Animales , Criopreservación/métodos , Crioprotectores/farmacología , Preservación de Órganos , Perfusión
15.
Nat Commun ; 14(1): 3407, 2023 06 09.
Artículo en Inglés | MEDLINE | ID: mdl-37296144

RESUMEN

Banking cryopreserved organs could transform transplantation into a planned procedure that more equitably reaches patients regardless of geographical and time constraints. Previous organ cryopreservation attempts have failed primarily due to ice formation, but a promising alternative is vitrification, or the rapid cooling of organs to a stable, ice-free, glass-like state. However, rewarming of vitrified organs can similarly fail due to ice crystallization if rewarming is too slow or cracking from thermal stress if rewarming is not uniform. Here we use "nanowarming," which employs alternating magnetic fields to heat nanoparticles within the organ vasculature, to achieve both rapid and uniform warming, after which the nanoparticles are removed by perfusion. We show that vitrified kidneys can be cryogenically stored (up to 100 days) and successfully recovered by nanowarming to allow transplantation and restore life-sustaining full renal function in nephrectomized recipients in a male rat model. Scaling this technology may one day enable organ banking for improved transplantation.


Asunto(s)
Trasplante de Riñón , Vitrificación , Masculino , Ratas , Animales , Criopreservación/métodos , Riñón , Preservación de Órganos/métodos
16.
Sci Rep ; 13(1): 7727, 2023 05 12.
Artículo en Inglés | MEDLINE | ID: mdl-37173516

RESUMEN

Temperature in the body and the tumor reflects physiological and pathological conditions. A reliable, contactless, and simplistic measurement system can be used for long-term monitoring of disease progression and therapy response. In this study, miniaturized battery-free wireless chips implanted into growing tumors on small animals were used to capture both basal and tumor temperature dynamics. Three preclinical models: melanoma (B16), breast cancer (4T1), and colon cancer (MC-38), were treated with adoptive T cell transfer, AC-T chemotherapy, and anti-PD-1 immunotherapy respectively. Each model presents a distinctive pattern of temperature history dependent on the tumor characteristic and influenced by the administered therapy. Certain features are associated with positive therapeutic response, for instance the transient reduction of body and tumor temperature following adaptive T cell transfer, the elevation of tumor temperature following chemotherapy, and a steady decline of body temperature following anti-PD-1 therapy. Tracking in vivo thermal activity by cost-effective telemetric sensing has the potential of offering earlier treatment assessment to patients without requiring complex imaging or lab testing. Multi-parametric on-demand monitoring of tumor microenvironment by permanent implants and its integration into health information systems could further advance cancer management and reduce patient burden.


Asunto(s)
Inmunoterapia , Melanoma , Animales , Temperatura , Linfocitos T/patología , Melanoma/patología , Inmunoterapia Adoptiva/métodos , Microambiente Tumoral
17.
Int J Pharm ; 635: 122744, 2023 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-36804522

RESUMEN

When exposed to an external electric field, lipid bilayer membranes are subject to increased permeability through the generation of pores. Combining this phenomenon, known as electroporation, with liposomal drug delivery offers the added benefit of on-demand release of the liposomal cargo. In previous studies, the maximum percent drug release when exposing liposomes to a pulsed electric field has not surpassed 30%, indicating most of the drug is still retained in the liposomes. Here we showed that by modulating the fluidity of the liposome membrane through appropriate selection of the primary lipid, as well as the addition of other fluidity modulating components such as cholesterol and biotinylated lipid, the electroporation-induced percent release could be increased to over 50%. In addition to improved induced release from liposomes in suspension, biomaterial scaffold-bound liposomes were developed. Electroporation-induced protein release from this solid phase was verified after performing further optimization of the liposome formulation to achieve increased stability at physiological temperatures. Collectively, this work advances the ability to achieve efficient electroporation-induced liposomal drug delivery, which has the potential to be used in concert with other clinical applications of electroporation, such as gene electrotransfer and irreversible electroporation (IRE), in order to synergistically increase treatment efficacy.


Asunto(s)
Sistemas de Liberación de Medicamentos , Liposomas , Liberación de Fármacos , Membrana Dobles de Lípidos , Electroporación , Suspensiones
18.
ACS Omega ; 8(4): 4331-4336, 2023 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-36743059

RESUMEN

The molecular weight, purity, and functionalization of polyethylene glycols are often characterized by 1H NMR spectroscopy. Oft-forgotten, the typical 1H NMR pulse sequence is not 13C decoupled. Hence, for large polymers, the 13C coupled 1H peaks arising from the repeating units have integrations comparable to that of the 1H of the terminal groups. Ignoring this coupling leads to erroneous assignments. Once correctly assigned, these 13C coupled 1H peaks can be used to determine both the molecular weight of the polymer and the efficacy of conjugation of a terminal moiety more accurately than the uncoupled 1H of the repeating unit.

19.
Ann Biomed Eng ; 51(3): 538-549, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36088432

RESUMEN

Cryosurgery is a minimally invasive approach to the treatment of focal prostate cancer (PCa). A major complication is the cryoinjury to the cavernous nerve in the neurovascular bundle (NVB). This nerve cryoinjury halts conduction of action potentials (APs) and can eventually result in erectile dysfunction and therefore diminished quality of life for the patient. Here, we propose the application of cryoprotective agents (CPA) to the regions of the nerves in the NVB, prior to prostate cryosurgery, to minimize non-recoverable loss of AP conduction. We modeled a cryosurgical procedure based on data taken during a clinical case and applied ex-vivo porcine phrenic nerves and rat sciatic nerve with temperature profile of NVB. The APs were measured before and after the CPA exposures and during 3 h of recovery. Comparisons of AP amplitude recovery with various CPA compositions reveal that certain CPAs (e.g., 5% DMSO + 7.5% Trehalose and 5% M22 for porcine and rat nerves, respectively) showed little or no toxicity and effective cryoprotection from freezing (on average 48% and 30% of recovered AP, respectively). In summary, we demonstrate that neural conduction can be preserved after exposure to freezing conditions if CPAs are properly selected and deployed onto the nerve.


Asunto(s)
Criocirugía , Disfunción Eréctil , Neoplasias de la Próstata , Masculino , Humanos , Ratas , Animales , Porcinos , Próstata/cirugía , Calidad de Vida , Disfunción Eréctil/tratamiento farmacológico , Disfunción Eréctil/etiología , Disfunción Eréctil/cirugía
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...