Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Environ Sci Technol ; 2024 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-39077826

RESUMEN

Transitioning to a low-carbon economy, necessary to mitigate the impacts of anthropogenic climate change, will lead to a significant increase in demand for critical minerals such as rare earth elements (REE). Meeting these raw materials requirements will be challenging, so there is increasing interest in new sources of REE including coal combustion byproducts (CCBs). Extraction of REE from CCBs can be advantageous as it involves reusing a waste product, thereby contributing to the circular economy. While a growing body of literature reports on the abundance of REE in CCBs globally, studies examining the key factors which control their recovery, including speciation and mode of occurrence, are lacking. This study employed synchrotron-based X-ray absorption spectroscopy to probe the speciation and local bonding environment of yttrium in coals and their associated CCBs. Linear Combination Fitting identified silicate and phosphate minerals as the dominant REE-bearing phases. Taken together with the results of extended X-ray absorption fine structure (EXAFS) curve fitting, we find there is minimal transformation in the REE host phase during combustion, indicating it is transferred in bulk from the coals to the CCBs. Accordingly, these findings can be incorporated into the development of an efficient, environmentally conscious recovery process.

2.
Environ Sci Technol ; 58(16): 7217-7227, 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38588505

RESUMEN

The energy transition will have significant mineral demands and there is growing interest in recovering critical metals, including rare earth elements (REE), from secondary sources in aqueous and sedimentary environments. However, the role of clays in REE transport and deposition in these settings remains understudied. This work investigated REE adsorption to the clay minerals illite and kaolinite through pH adsorption experiments and extended X-ray absorption fine structure (EXAFS). Clay type, pH, and ionic strength (IS) affected adsorption, with decreased adsorption under acidic pH and elevated IS. Illite had a higher adsorption capacity than kaolinite; however, >95% adsorption was achieved at pH ∼7.5 regardless of IS or clay. These results were used to develop a surface complexation model with the derived binding constants used to predict REE speciation in the presence of competing sorbents. This demonstrated that clays become increasingly important as pH increases, and EXAFS modeling showed that REE can exist as both inner- and outer-sphere complexes. Together, this indicated that clays can be an important control on the transport and enrichment of REE in sedimentary systems. These findings can be applied to identify settings to target for resource extraction or to predict REE transport and fate as a contaminant.


Asunto(s)
Arcilla , Metales de Tierras Raras , Minerales , Adsorción , Metales de Tierras Raras/química , Arcilla/química , Minerales/química , Concentración de Iones de Hidrógeno , Silicatos de Aluminio/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...