Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Am J Bot ; 99(12): 1903-9, 2012 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-23204486

RESUMEN

PREMISE OF THE STUDY: Nymphaea odorata grows in water up to 2 m deep, producing fewer larger leaves in deeper water. This species has a convective flow system that moves gases from younger leaves through submerged parts to older leaves, aerating submerged parts. Petiolar air canals are the convective flow pathways. This study describes the structure of these canals, how this structure varies with water depth, and models how convective flow varies with depth. • METHODS: Nymphaea odorata plants were grown at water depths from 30 to 90 cm. Lamina area, petiolar cross-sectional area, and number and area of air canals were measured. Field-collected leaves and leaves from juvenile plants were analyzed similarly. Using these data and data from the literature, we modeled how convective flow changes with water depth. • KEY RESULTS: Petioles of N. odorata produce two central pairs of air canals; additional pairs are added peripherally, and succeeding pairs are smaller. The first three pairs account for 96% of air canal area. Air canals form 24% of petiolar cross-sectional area. Petiolar and air canal cross-sectional areas increase with water depth. Petiolar area scales with lamina area, but the slope of this relationship is lower in 90 cm water than at shallower depths. In our model, the rate of convective flow varied with depth and with the balance of influx to efflux leaves. • CONCLUSIONS: Air canals in N. odorata petioles increase in size and number in deeper water but at a decreasing amount in relation to lamina area. Convective flow also depends on the number of influx to efflux laminae.


Asunto(s)
Convección , Gases/metabolismo , Nymphaea/anatomía & histología , Nymphaea/metabolismo , Florida , Modelos Biológicos , Nymphaea/crecimiento & desarrollo , Hojas de la Planta/anatomía & histología , Hojas de la Planta/crecimiento & desarrollo , Hojas de la Planta/metabolismo , Reología , Agua , Humedales
2.
PLoS One ; 3(11): e3808, 2008.
Artículo en Inglés | MEDLINE | ID: mdl-19043580

RESUMEN

The metabolic cost associated with locomotion represents a significant part of an animal's metabolic energy budget. Therefore understanding the ways in which animals manage the energy required for locomotion by controlling muscular effort is critical to understanding limb design and the evolution of locomotor behavior. The assumption that energetic economy is the most important target of natural selection underlies many analyses of steady animal locomotion, leading to the prediction that animals will choose gaits and postures that maximize energetic efficiency. Many quadrupedal animals, particularly those that specialize in long distance steady locomotion, do in fact reduce the muscular contribution required for walking by adopting pendulum-like center of mass movements that facilitate exchange between kinetic energy (KE) and potential energy (PE). However, animals that are not specialized for long distance steady locomotion may face a more complex set of requirements, some of which may conflict with the efficient exchange of mechanical energy. For example, the "stealthy" walking style of cats may demand slow movements performed with the center of mass close to the ground. Force plate and video data show that domestic cats (Felis catus, Linnaeus, 1758) have lower mechanical energy recovery than mammals specialized for distance. A strong negative correlation was found between mechanical energy recovery and diagonality in the footfalls and there was also a negative correlation between limb compression and diagonality of footfalls such that more crouched postures tended to have greater diagonality. These data show a previously unrecognized mechanical relationship in which crouched postures are associated with changes in footfall pattern which are in turn related to reduced mechanical energy recovery. Low energy recovery was not associated with decreased vertical oscillations of the center of mass as theoretically predicted, but rather with posture and footfall pattern on the phase relationship between potential and kinetic energy. An important implication of these results is the possibility of a tradeoff between stealthy walking and economy of locomotion. This potential tradeoff highlights the complex and conflicting pressures that may govern the locomotor choices that animals make.


Asunto(s)
Marcha/fisiología , Caminata/fisiología , Animales , Gatos , Metabolismo Energético , Locomoción , Mecánica
3.
J Exp Biol ; 211(Pt 16): 2658-68, 2008 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-18689419

RESUMEN

During ontogeny, animals undergo changes in size and shape that result in shifts in performance, behavior and resource use. These ontogenetic changes provide an opportunity to test hypotheses about how the growth of structures affects biological functions. In the present study, we ask how ontogenetic changes in skull biomechanics affect the ability of bluegill sunfish, a high-performance suction feeder, to produce flow speeds and accelerations during suction feeding. The flow of water in front of the mouth was measured directly for fish ranging from young-of-year to large adults, using digital particle imaging velocimetry (DPIV). As bluegill size increased, the magnitude of peak flow speed they produced increased, and the effective suction distance increased because of increasing mouth size. However, throughout the size range, the timing of peak fluid speed remained unchanged, and flow was constrained to approximately one gape distance from the mouth. The observed scaling relationships between standard length and peak flow speed conformed to expectations derived from two biomechanical models, one based on morphological potential to produce suction pressure (the Suction Index model) and the other derived from a combination of morphological and kinematic variables (the Expanding Cone model). The success of these models in qualitatively predicting the observed allometry of induced flow speed reveals that the scaling of cranial morphology underlies the scaling of suction performance in bluegill.


Asunto(s)
Conducta Alimentaria/fisiología , Perciformes/crecimiento & desarrollo , Perciformes/fisiología , Animales , Fenómenos Biomecánicos , Maxilares/fisiología , Modelos Biológicos , Reología , Factores de Tiempo
4.
Q Rev Biol ; 83(2): 153-69, 2008 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-18605533

RESUMEN

The evolution of flapping flight in bats from an arboreal gliding ancestor appears on the surface to be a relatively simple transition. However, bat flight is a highly complex functional system from a morphological, physiological, and aerodynamic perspective, and the transition from a gliding precursor may involve functional discontinuities that represent evolutionary hurdles. In this review, I suggest a framework for a comprehensive treatment of the evolution of complex functional systems that emphasizes a mechanistic understanding of the initial state, the final state, and the proposed transitional states. In this case, bats represent the final state and extant mammalian gliders are used as a model for the initial state. To explore possible transitional states, I propose a set of criteria for evaluating hypotheses about the evolution of flight in vertebrates and suggest methods by which we can advance our understanding of the transition from gliding to flapping flight. Although it is impossible ever to know with certainty the sequence of events landing to flapping flight, the field of possibilities can be narrowed to those that maintain the functional continuity of the wing and result in improved aerodynamic performance across this transition. The fundamental differences between gliding and flapping flight should not necessarily be seen as evidence that this transition could not occur; rather, these differences point out compelling aspects of the aerodynamics of animal wings that require further investigation.


Asunto(s)
Evolución Biológica , Quirópteros/fisiología , Vuelo Animal/fisiología , Animales , Fenómenos Biomecánicos , Fenómenos Biofísicos , Biofisica , Quirópteros/anatomía & histología , Quirópteros/genética , Modelos Biológicos , Alas de Animales/anatomía & histología , Alas de Animales/fisiología
5.
J R Soc Interface ; 5(28): 1309-16, 2008 Nov 06.
Artículo en Inglés | MEDLINE | ID: mdl-18397864

RESUMEN

In fishes that employ suction feeding, coordinating the timing of peak flow velocity with mouth opening is likely to be an important feature of prey capture success because this will allow the highest forces to be exerted on prey items when the jaws are fully extended and the flow field is at its largest. Although it has long been known that kinematics of buccal expansion in feeding fishes are characterized by an anterior-to-posterior wave of expansion, this pattern has not been incorporated in most previous computational models of suction feeding. As a consequence, these models have failed to correctly predict the timing of peak flow velocity, which according to the currently available empirical data should occur around the time of peak gape. In this study, we use a simple fluid dynamic model to demonstrate that the inclusion of an anterior-to-posterior wave of buccal expansion can correctly reproduce the empirically determined flow velocity profile, although only under very constrained conditions, whereas models that do not allow this wave of expansion inevitably predict peak velocity earlier in the strike, when the gape is less than half of its maximum. The conditions that are required to produce a realistic velocity profile are as follows: (i) a relatively long time lag between mouth opening and expansion of the more posterior parts of the mouth, (ii) a short anterior portion of the mouth relative to more posterior sections, and (iii) a pattern of movement that begins slowly and then rapidly accelerates. Greater maximum velocities were generated in simulations without the anterior-to-posterior wave of expansion, suggesting a trade-off between maximizing fluid speed and coordination of peak fluid speed with peak gape.


Asunto(s)
Conducta Alimentaria/fisiología , Peces/fisiología , Modelos Teóricos , Boca/fisiología , Conducta en la Lactancia/fisiología , Animales , Fenómenos Biomecánicos , Reología
6.
J Exp Zool A Ecol Genet Physiol ; 309(5): 225-42, 2008 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-18409187

RESUMEN

The ability to change direction is essential to any animal that moves around in a complex, 3D environment. In this study we present the first 3D description of body positions during gliding turns in a mammalian gliding specialist, the southern flying squirrel, Glaucomys volans. In addition, we used these kinematic data to estimate the aerodynamic forces generated by the animals and rotational velocities and accelerations of the body while turning. These results were compared with similar measurements of flying squirrels during straight glides. The two individuals used in this study differed significantly in limb position asymmetries between the two sides of their bodies and also were significantly different in measures of turning performance. The individual with better performance used limb positions consistent with a primarily lift-based turning mechanism (banked turn), whereas the individual with poorer performance used limb positions consistent with a primarily drag-based turning mechanism (crabbed turn). Both individuals employed limb movements continuously through the gliding turn, but these movements did not have any consistent relationships with body rotations or lateral acceleration. As compared with straight glides, squirrels used significantly higher angles of attack and had lower lift-to-drag ratios, but did not differ in glide angle. Contrary to the typical view of maneuvering during gliding as a simple, static form of locomotion, the results presented here indicate that mammalian gliding is a complex behavior comprising the interplay of many components of limb position and wing shape that affect the balance of forces that control the turn.


Asunto(s)
Conducta Animal/fisiología , Vuelo Animal/fisiología , Sciuridae/fisiología , Análisis de Varianza , Animales , Fenómenos Biomecánicos , Locomoción/fisiología , Modelos Anatómicos , Modelos Biológicos
7.
J Exp Biol ; 210(Pt 15): 2593-606, 2007 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-17644674

RESUMEN

Gliding has often been discussed in the literature as a possible precursor to powered flight in vertebrates, but few studies exist on the mechanics of gliding in living animals. In this study I analyzed the 3D kinematics of sugar gliders (Petaurus breviceps) during short glides in an enclosed space. Short segments of the glide were captured on video, and the positions of marked anatomical landmarks were used to compute linear distances and angles, as well as whole body velocities and accelerations. From the whole body accelerations I estimated the aerodynamic forces generated by the animals. I computed the correlations between movements of the limbs and body rotations to examine the control of orientation during flight. Finally, I compared these results to those of my earlier study on the similarly sized and distantly related southern flying squirrel (Glaucomys volans). The sugar gliders in this study accelerated downward slightly (1.0+/-0.5 m s(-2)), and also accelerated forward (2.1+/-0.6 m s(-2)) in all but one trial, indicating that the body weight was not fully supported by aerodynamic forces and that some of the lift produced forward acceleration rather than just balancing body weight. The gliders used high angles of attack (44.15+/-3.12 degrees ), far higher than the angles at which airplane wings would stall, yet generated higher lift coefficients (1.48+/-0.18) than would be expected for a stalled wing. Movements of the limbs were strongly correlated with body rotations, suggesting that sugar gliders make extensive use of limb movements to control their orientation during gliding flight. In addition, among individuals, different limb movements were associated with a given body rotation, suggesting that individual variation exists in the control of body rotations. Under similar conditions, flying squirrels generated higher lift coefficients and lower drag coefficients than sugar gliders, yet had only marginally shallower glides. Flying squirrels have a number of morphological specializations not shared by sugar gliders that may help to explain their greater lift generating performance.


Asunto(s)
Vuelo Animal/fisiología , Marsupiales/fisiología , Animales , Fenómenos Biomecánicos , Extremidades/fisiología , Grabación en Video
8.
J Exp Biol ; 209(Pt 4): 689-701, 2006 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-16449563

RESUMEN

Gliding is the simplest form of flight, yet relatively little is known about its mechanics in animals. The goal of this study was to describe the body position and performance of a gliding mammal and to identify correlates between kinematics and aerodynamic performance. To do this, I used a pair of high-speed digital cameras to record a portion of the middle of glides by southern flying squirrels, Glaucomys volans. The squirrels launched from a height of 4 m and landed on a vertical pole. Reflective markers were applied to anatomical landmarks and the 3-D coordinates of these points were computed to describe the kinematics of the glides. From these data I estimated the lift and drag generated during the glide, and correlated these variables with gliding performance as measured by glide angle, glide speed and stability. In the majority of the glide sequences the squirrels accelerated in the downward direction and accelerated horizontally forward as they moved through the calibrated volume in the middle of the glide trajectory, rather than exhibiting a steady glide in which the body weight is balanced by the resultant aerodynamic force. Compared to human engineered airfoils, the angles of attack used by the squirrels were unexpectedly high, ranging from 35.4 degrees to 53.5 degrees , far above the angle of attack at which an aircraft wing would typically stall. As expected based on aerodynamic theory, there was a negative correlation between angle of attack and lift coefficient, indicating that the wings are stalled, and a positive correlation between angle of attack and drag coefficient. Also as expected, there was a negative correlation between lift-to-drag ratio and angle of attack, as increasing angle of attack produced both less lift and more drag. Within glides, there was a strong correlation between nose-down pitching rotations and limb movements that tended to increase the angle of attack of the wing membrane, suggesting that the animals actively control their pitch by moving their limbs. The squirrels used much steeper glide angles than those reported for other gliding animals, ranging from 40.4 degrees to 57.4 degrees . It is likely that this is because they did not launch from a great enough height to reach their minimum glide angle. In some trials the glide angle increased over the captured portion of the glide, whereas in others it decreased, and the magnitude of the changes varied substantially, rendering it difficult to ascertain which portion of the glide trajectory was represented. Decreases in glide angle were strongly correlated with increases in lift coefficient, but were uncorrelated with drag coefficient.


Asunto(s)
Vuelo Animal/fisiología , Sciuridae/fisiología , Animales , Fenómenos Biomecánicos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...