Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
2.
J Water Health ; 22(8): 1347-1356, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39212274

RESUMEN

Wastewater-based genomic surveillance can improve community prevalence estimates and identify emerging variants of pathogens. Wastewater influents and treated effluents from six wastewater treatment plants (WWTPs) in Tunisia were analyzed between December 2021 and July 2022. Wastewater samples were analyzed with reverse transcription solid digital PCR (RT-sdPCR) and whole-genome sequencing to determine the amount of SARS-CoV-2 RNA and assign SARS-CoV-2 lineages. The virus variants detected in wastewater samples were compared with COVID-19 prevalence data. The quantitative results in wastewater influents revealed that viral RNA concentrations at the treatment plants corroborate with locally reported clinical cases and show an increase before the increment of clinically diagnosed new COVID-19 cases between April and July 2022. Delta and Omicron variants were identified in the Tunisian wastewater. Interestingly, the presence of variant BA.5 was detected in samples prior to its inclusion as a variant of concern (VOC) by the Tunisian National Health Authorities. SARS-CoV-2 was detected in wastewater effluents, indicating that the wastewater treatment techniques used in the majority of Tunisian WWTPs are inefficient in removing the virus traces. This study reports the first identification of SARS-CoV-2 VOCs in Tunisian wastewater samples.


Asunto(s)
COVID-19 , SARS-CoV-2 , Aguas Residuales , Túnez/epidemiología , Aguas Residuales/virología , SARS-CoV-2/genética , SARS-CoV-2/aislamiento & purificación , COVID-19/epidemiología , COVID-19/virología , Humanos , ARN Viral/genética , ARN Viral/análisis
3.
Microbiol Spectr ; 12(6): e0069024, 2024 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-38752731

RESUMEN

Enterovirus A71 (EV-A71) is associated with neurological conditions such as acute meningitis and encephalitis. The virus is detected in the bloodstream, and high blood viral loads are associated with central nervous system (CNS) manifestations. We used an in vitro blood-brain barrier (BBB) model made up of human brain-like endothelial cells (hBLECs) and brain pericytes grown in transwell systems to investigate whether three genetically distinct EV-A71 strains (subgenogroups C1, C1-like, and C4) can cross the human BBB. EV-A71 poorly replicated in hBLECs, which released moderate amounts of infectious viruses from their luminal side and trace amounts of infectious viruses from their basolateral side. The barrier properties of hBLECs were not impaired by EV-A71 infection. We investigated the passage through hBLECs of EV-A71-infected white blood cells. EV-A71 strains efficiently replicated in immune cells, including monocytes, neutrophils, and NK/T cells. Attachment to hBLECs of immune cells infected with the C1-like virus was higher than attachment of cells infected with C1-06. EV-A71 infection did not impair the transmigration of immune cells through hBLECs. Overall, EV-A71 targets different white blood cell populations that have the potential to be used as a Trojan horse to cross hBLECs more efficiently than cell-free EV-A71 particles.IMPORTANCEEnterovirus A71 (EV-A71) was first reported in the USA, and numerous outbreaks have since occurred in Asia and Europe. EV-A71 re-emerged as a new multirecombinant strain in 2015 in Europe and is now widespread. The virus causes hand-foot-and-mouth disease in young children and is involved in nervous system infections. How the virus spreads to the nervous system is unclear. We investigated whether white blood cells could be infected by EV-A71 and transmit it across human endothelial cells mimicking the blood-brain barrier protecting the brain from adverse effects. We found that endothelial cells provide a strong roadblock to prevent the passage of free virus particles but allow the migration of infected immune cells, including monocytes, neutrophils, and NK/T cells. Our data are consistent with the potential role of immune cells in the pathogenesis of EV-A71 infections by spreading the virus in the blood and across the human blood-brain barrier.


Asunto(s)
Barrera Hematoencefálica , Células Endoteliales , Enterovirus Humano A , Infecciones por Enterovirus , Barrera Hematoencefálica/virología , Humanos , Enterovirus Humano A/genética , Enterovirus Humano A/fisiología , Infecciones por Enterovirus/virología , Infecciones por Enterovirus/inmunología , Células Endoteliales/virología , Replicación Viral , Monocitos/virología , Monocitos/inmunología , Pericitos/virología , Leucocitos/virología , Leucocitos/inmunología , Encéfalo/virología , Células Asesinas Naturales/inmunología , Neutrófilos/inmunología , Neutrófilos/virología
4.
Euro Surveill ; 28(22)2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37261730

RESUMEN

We report nine severe neonatal infections caused by a new variant of echovirus 11. All were male, eight were twins. At illness onset, they were 3-5 days-old and had severe sepsis and liver failure. This new variant, detected in France since April 2022, is still circulating and has caused more fatal neonatal enterovirus infections in 2022 and 2023 (8/496; 1.6%, seven associated with echovirus 11) compared with 2016 to 2021 (7/1,774; 0.4%). National and international alerts are warranted.


Asunto(s)
Enfermedades Transmisibles , Infecciones por Echovirus , Infecciones por Enterovirus , Enterovirus , Recién Nacido , Humanos , Masculino , Femenino , Infecciones por Echovirus/diagnóstico , Infecciones por Echovirus/epidemiología , Enterovirus Humano B/genética , Infecciones por Enterovirus/diagnóstico , Infecciones por Enterovirus/epidemiología , Francia/epidemiología
5.
Microbiol Resour Announc ; 12(6): e0032523, 2023 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-37212710

RESUMEN

A nearly complete genome sequence of enterovirus type A119 was determined from an urban wastewater sample collected during a surveillance campaign in 2015 in Clermont-Ferrand, France. The partial VP1 sequence is a close relative of other partial enterovirus type A119 sequences detected in France and South Africa in the same year.

6.
Microbiol Resour Announc ; 12(5): e0022623, 2023 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-37039665

RESUMEN

Wastewater surveillance allowed the detection of an enterovirus (EV) type rarely reported in clinical settings. We detected an EV-C116 strain in a wastewater sample in France and characterized its complete genome. This virus was genetically closely related to African strains but distantly related to the only complete genome previously described.

7.
Clin Microbiol Infect ; 28(11): 1503.e5-1503.e8, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-35792280

RESUMEN

OBJECTIVES: To describe Delta/Omicron SARS-CoV-2 variants co-infection detection and confirmation during the fifth wave of COVID-19 pandemics in France in 7 immunocompetent and epidemiologically unrelated patients. METHODS: Since December 2021, the surveillance of Delta/Omicron SARS-CoV-2 variants of concern (VOC) circulation was performed through prospective screening of positive-samples using single nucleotide polymorphism (SNP) PCR assays targeting SARS-CoV-2 S-gene mutations K417N (Omicron specific) and L452R (Delta specific). Samples showing unexpected mutational profiles were further submitted to whole genome sequencing (WGS) using three different primer sets. RESULTS: Between weeks 49-2021 and 02-2022, SARS-CoV-2 genome was detected in 3831 respiratory samples, of which 3237 (84.5%) were screened for VOC specific SNPs. Unexpected mutation profiles suggesting a dual Delta/Omicron population were observed in 7 nasopharyngeal samples (0.2%). These co-infections were confirmed by WGS. For 2 patients, the sequence analyses of longitudinal samples collected 7 to 11 days apart showed that Delta or Omicron can outcompete the other variant during dual infection. Additionally, for one of these samples, a recombination event between Delta and Omicron was detected. CONCLUSIONS: This work demonstrates that SARS-CoV-2 Delta/Omicron co-infections are not rare in high virus co-circulation periods. Moreover, co-infections can further lead to genetic recombination which may generate new chimeric variants with unpredictable epidemic or pathogenic properties that could represent a serious health threat.


Asunto(s)
COVID-19 , Coinfección , Humanos , SARS-CoV-2/genética , Coinfección/epidemiología , Estudios Prospectivos , COVID-19/epidemiología , Análisis de Secuencia
8.
Viruses ; 14(5)2022 05 17.
Artículo en Inglés | MEDLINE | ID: mdl-35632819

RESUMEN

Coxsackievirus A6 (CVA6) emerged as the most common enterovirus of seasonal outbreaks of hand-foot-and-mouth disease (HFMD). We investigated CVA6 genetic diversity among the clinical phenotypes reported in the paediatric population during sentinel surveillance in France between 2010 and 2018. CVA6 infection was confirmed in 981 children (mean age 1.52 years [IQR 1.17-2.72]) of whom 564 (58%) were males. Atypical HFMD was reported in 705 (72%) children, followed by typical HFMD in 214 (22%) and herpangina in 57 (6%) children. Throat specimens of 245 children were processed with a target-enrichment new-generation sequencing approach, which generated 213 complete CVA6 genomes. The genomes grouped within the D1 and D3 clades (phylogeny inferred with the P1 genomic region). In total, 201 genomes were classified among the recombinant forms (RFs) A, B, F, G, H, and N, and 12 genomes were assigned to 5 previously unreported RFs (R-V). The most frequent RFs were A (58%), H (19%), G (6.1%), and F (5.2%). The yearly number of RFs ranged between 1 (in 2012 and 2013) and 6 (2018). The worldwide CVA6 epidemic transmission began between 2005 and 2007, which coincided with the global spread of the recombinant subclade D3/RF-A.


Asunto(s)
Enterovirus , Fiebre Aftosa , Enfermedad de Boca, Mano y Pie , Animales , Brotes de Enfermedades , Enterovirus/genética , Femenino , Enfermedad de Boca, Mano y Pie/epidemiología , Humanos , Masculino , Análisis de Secuencia de ADN
9.
Euro Surveill ; 26(43)2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34713796

RESUMEN

We report a large-scale outbreak of hand, foot and mouth disease (HFMD) in France. As at 28 September 2021, 3,403 cases have been reported (47% higher than in 2018-19). We prospectively analysed 210 clinical samples; 190 (90.5%) were enterovirus-positive. Most children presented with atypical HFMD. Coxsackievirus (CV)A6 (49.5%; 94/190) was predominant; no enterovirus A71 was detected. Dermatological and neurological complications of HFMD justify prospective syndromic and virological surveillance for early detection of HFMD outbreaks and identification of associated types.


Asunto(s)
Infecciones por Enterovirus , Enterovirus , Enfermedad de Boca, Mano y Pie , Niño , Brotes de Enfermedades , Infecciones por Enterovirus/epidemiología , Enfermedad de Boca, Mano y Pie/diagnóstico , Enfermedad de Boca, Mano y Pie/epidemiología , Humanos , Lactante , Estudios Prospectivos
10.
Viruses ; 13(8)2021 08 13.
Artículo en Inglés | MEDLINE | ID: mdl-34452471

RESUMEN

Enterovirus D68 (EV-D68) has emerged as an agent of epidemic respiratory illness and acute flaccid myelitis in the paediatric population but data are lacking in adult patients. We performed a 4.5-year single-centre retrospective study of all patients who tested positive for EV-D68 and analysed full-length EV-D68 genomes of the predominant clades B3 and D1. Between 1 June 2014, and 31 December 2018, 73 of the 11,365 patients investigated for respiratory pathogens tested positive for EV-D68, of whom 20 (27%) were adults (median age 53.7 years [IQR 34.0-65.7]) and 53 (73%) were children (median age 1.9 years [IQR 0.2-4.0]). The proportion of adults increased from 12% in 2014 to 48% in 2018 (p = 0.01). All adults had an underlying comorbidity factor, including chronic lung disease in 12 (60%), diabetes mellitus in six (30%), and chronic heart disease in five (25%). Clade D1 infected a higher proportion of adults than clades B3 and B2 (p = 0.001). Clade D1 was more divergent than clade B3: 5 of 19 amino acid changes in the capsid proteins were located in putative antigenic sites. Adult patients with underlying conditions are more likely to present with severe complications associated with EV-D68, notably the emergent clade D1.


Asunto(s)
Enterovirus Humano D/genética , Infecciones por Enterovirus/epidemiología , Infecciones por Enterovirus/virología , Infecciones del Sistema Respiratorio/virología , Adulto , Anciano , Enfermedades Virales del Sistema Nervioso Central/epidemiología , Enfermedades Virales del Sistema Nervioso Central/virología , Preescolar , ADN Viral/genética , Enterovirus Humano D/clasificación , Enterovirus Humano D/patogenicidad , Infecciones por Enterovirus/complicaciones , Femenino , Francia/epidemiología , Genoma Viral , Humanos , Lactante , Masculino , Persona de Mediana Edad , Mielitis/epidemiología , Mielitis/virología , Enfermedades Neuromusculares/epidemiología , Enfermedades Neuromusculares/virología , Filogenia , Estudios Prospectivos , Infecciones del Sistema Respiratorio/epidemiología , Estudios Retrospectivos
11.
mBio ; 11(5)2020 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-32873755

RESUMEN

The discovery of cruciviruses revealed the most explicit example of a common protein homologue between DNA and RNA viruses to date. Cruciviruses are a novel group of circular Rep-encoding single-stranded DNA (ssDNA) (CRESS-DNA) viruses that encode capsid proteins that are most closely related to those encoded by RNA viruses in the family Tombusviridae The apparent chimeric nature of the two core proteins encoded by crucivirus genomes suggests horizontal gene transfer of capsid genes between DNA and RNA viruses. Here, we identified and characterized 451 new crucivirus genomes and 10 capsid-encoding circular genetic elements through de novo assembly and mining of metagenomic data. These genomes are highly diverse, as demonstrated by sequence comparisons and phylogenetic analysis of subsets of the protein sequences they encode. Most of the variation is reflected in the replication-associated protein (Rep) sequences, and much of the sequence diversity appears to be due to recombination. Our results suggest that recombination tends to occur more frequently among groups of cruciviruses with relatively similar capsid proteins and that the exchange of Rep protein domains between cruciviruses is rarer than intergenic recombination. Additionally, we suggest members of the stramenopiles/alveolates/Rhizaria supergroup as possible crucivirus hosts. Altogether, we provide a comprehensive and descriptive characterization of cruciviruses.IMPORTANCE Viruses are the most abundant biological entities on Earth. In addition to their impact on animal and plant health, viruses have important roles in ecosystem dynamics as well as in the evolution of the biosphere. Circular Rep-encoding single-stranded (CRESS) DNA viruses are ubiquitous in nature, many are agriculturally important, and they appear to have multiple origins from prokaryotic plasmids. A subset of CRESS-DNA viruses, the cruciviruses, have homologues of capsid proteins encoded by RNA viruses. The genetic structure of cruciviruses attests to the transfer of capsid genes between disparate groups of viruses. However, the evolutionary history of cruciviruses is still unclear. By collecting and analyzing cruciviral sequence data, we provide a deeper insight into the evolutionary intricacies of cruciviruses. Our results reveal an unexpected diversity of this virus group, with frequent recombination as an important determinant of variability.


Asunto(s)
Virus ADN/clasificación , Minería de Datos , Genoma Viral , Metagenoma , Proteínas de la Cápside/genética , Virus ADN/genética , Metagenómica , Virus ARN/clasificación , Virus ARN/genética , Tombusviridae/clasificación , Tombusviridae/genética
12.
Water Res ; 169: 115246, 2020 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-31710918

RESUMEN

In a one-year (October 2014-October 2015) pilot study, we assessed wastewater monitoring with sustained sampling for analysis of global enterovirus (EV) infections in an urban community. Wastewater was analysed by ultra-deep sequencing (UDS) after PCR amplification of the partial VP1 capsid protein gene. The nucleotide sequence analysis showed an unprecedented diversity of 48 EV types within the community, which were assigned to the taxonomic species A (n = 13), B (n = 23), and C (n = 12). During the same period, 26 EV types, of which 22 were detected in wastewater, were identified in patients referred to the teaching hospital serving the same urban population. Wastewater surveillance detected a silent circulation of 26 EV types including viruses reported in clinically rare respiratory diseases. Wastewater monitoring as a supplementary procedure can complement clinical surveillance of severe diseases related to non-polio EVs and contribute to the final stages of poliomyelitis eradication.


Asunto(s)
Infecciones por Enterovirus , Enterovirus , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Filogenia , Proyectos Piloto , Aguas Residuales
13.
Euro Surveill ; 23(7)2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-29471623

RESUMEN

BackgroundHuman enteric viruses are resistant in the environment and transmitted via the faecal-oral route. Viral shedding in wastewater gives the opportunity to track emerging pathogens and study the epidemiology of enteric infectious diseases in the community. Aim: The aim of this study was to monitor the circulation of enteric viruses in the population of the Clermont-Ferrand area (France) by analysis of urban wastewaters. Methods: Raw and treated wastewaters were collected between October 2014 and October 2015 and concentrated by a two-step protocol using tangential flow ultrafiltration and polyethylene glycol precipitation. Processed samples were analysed for molecular detection of adenovirus, norovirus, rotavirus, parechovirus, enterovirus (EV), hepatitis A (HAV) and E (HEV) viruses. Results: All wastewater samples (n = 54) contained viruses. On average, six and four virus species were detected in, respectively, raw and treated wastewater samples. EV-positive samples were tested for EV-D68 to assess its circulation in the community. EV-D68 was detected in seven of 27 raw samples. We collected data from clinical cases of EV-D68 (n = 17), HAV (n = 4) and HEV infection (n = 16) and compared wastewater-derived sequences with clinical sequences. We showed the silent circulation of EV-D68 in September 2015, the wide circulation of HAV despite few notifications of acute disease and the presence in wastewater of the major HEV subtypes involved in clinical local cases. Conclusion: The environmental surveillance overcomes the sampling bias intrinsic to the study of infections associated with hospitalisation and allows the detection in real time of viral sequences genetically close to those reported in clinical specimens.


Asunto(s)
Enterovirus/genética , Enterovirus/aislamiento & purificación , Monitoreo del Ambiente , Aguas Residuales/virología , Microbiología del Agua , Enterovirus/clasificación , Infecciones por Enterovirus/virología , Heces/virología , Francia/epidemiología , Humanos , Proyectos Piloto , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
14.
PLoS One ; 9(2): e88581, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24533116

RESUMEN

Lyme disease is a zoonosis caused by various species belonging to the Borrelia burgdorferi bacterial species complex. These pathogens are transmitted by ticks and infect multiple, taxonomically distinct, host species. From an epidemiological perspective, it is important to determine whether genetic variants within the species complex are able to spread freely through the whole host community or, instead, if certain variants are restricted to particular hosts. To this end, we characterized the genotypes of members of the B. burgdorferi species complex; the bacteria were isolated from more than two hundred individuals captured in the wild and belonging to three different rodent host species. For each individual, we used a high-throughput approach to amplify and sequence rplB, a housekeeping gene, and ospC, which is involved in infection. This approach allowed us to evaluate the genetic diversity both within and among species in the B. burgdorferi species complex. Strong evidence of genetic differentiation among host species was revealed by both genes, even though they are, a priori, not constrained by the same selective pressures. These data are discussed in the context of the advancements made possible by multi-locus high-throughput sequencing and current knowledge of Lyme disease epidemiology.


Asunto(s)
Borrelia burgdorferi/genética , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Especificidad del Huésped , Algoritmos , Animales , Antígenos Bacterianos/metabolismo , Arvicolinae/microbiología , Infecciones Bacterianas/microbiología , Infecciones Bacterianas/veterinaria , Proteínas Bacterianas/genética , Técnicas de Tipificación Bacteriana , Borrelia burgdorferi/clasificación , Variación Genética , Genotipo , Ratones , Filogenia , Reacción en Cadena de la Polimerasa , Polimorfismo de Longitud del Fragmento de Restricción , Sciuridae/microbiología , Alineación de Secuencia
15.
Virologie (Montrouge) ; 16(6): 356-370, 2012 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-31910554

RESUMEN

Innate immunity plays a critical role in the host response to a viral infection. In particular, type I interferons (IFN-I) are major effectors of antiviral innate immunity. Herein, interplays between HTLV-1 and the IFN-I response are reviewed. Particular emphasis is put on virus sensing by innate immunity receptors and on anti-HTLV-1 effects of IFN-I. We also discuss HTLV-1-induced alteration of IFN-I function and how IFN-I/AZT treatment of adult T-cell leukemia/lymphoma patients can lead to complete remission despite virus-induced escape mechanisms.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...