Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Polymers (Basel) ; 16(19)2024 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-39408412

RESUMEN

In the search for novel polymeric molecules that could be used as electroactive materials, seven novel polyenaminones were prepared in high yields by the transaminative polymerization of resorcinol-derived bis-enaminones with m- and p-phenylenediamine and with 2,5-diaminohydroquinone. The obtained polymers show very low solubility in organic solvents and absorb UV light and visible light at wavelengths below 500 nm. All the obtained polymeric products were tested for redox activity in a Li battery setup. The 2,5-diaminohydroquinone-derived compound showed the best redox activity, with a maximum capacity of 86 mAh/g and relatively good capacity retention, thus confirming the hydroquinone group as the primary redox-active group. Other potential redox-active groups, such as resorcinol and conjugated carbonyls, showed limited activity, while variations in the phenylene groups and the substitution of phenolic groups in the resorcinol residue did not impact the electrochemical activity of the polymers. Their electrochemical properties, together with their previously established chemical recyclability, make polyenaminones promising scaffolds for the development of materials for sustainable energy storage applications.

2.
Chem Mater ; 36(3): 1025-1040, 2024 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-38370280

RESUMEN

Organic active materials are seen as next-generation battery materials that could circumvent the sustainability and cost limitations connected with the current Li-ion battery technology while at the same time enabling novel battery functionalities like a bioderived feedstock, biodegradability, and mechanical flexibility. Many promising research results have recently been published. However, the reproducibility and comparison of the literature results are somehow limited due to highly variable electrode formulations and electrochemical testing conditions. In this Perspective, we provide a critical view of the organic cathode active materials and suggest future guidelines for electrochemical characterization, capacity evaluation, and mechanistic investigation to facilitate reproducibility and benchmarking of literature results, leading to the accelerated development of organic electrode active materials for practical applications.

3.
Faraday Discuss ; 250(0): 110-128, 2024 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-37987255

RESUMEN

One of the possible solutions to circumvent the sluggish kinetics, low capacity, and poor integrity of inorganic cathodes commonly used in rechargeable aluminium batteries (RABs) is the use of redox-active polymers as cathodes. They are not only sustainable materials characterised by their structure tunability, but also exhibit a unique ion coordination redox mechanism that makes them versatile ion hosts suitable for voluminous aluminium cation complexes, as demonstrated by the poly(quinoyl) family. Recently, phenazine-based compounds have been found to have high capacity, reversibility and fast redox kinetics in aqueous electrolytes because of the presence of a CN double bond. Here, we present one of the first examples of a phenazine-based hybrid microporous polymer, referred to as IEP-27-SR, utilized as an organic cathode in an aluminium battery with an AlCl3/EMIMCl ionic liquid electrolyte. The preliminary redox and charge storage mechanism of IEP-27-SR was confirmed by ex situ ATR-IR and EDS analyses. The introduction of phenazine active units in a robust microporous framework resulted in a remarkable rate capability (specific capacity of 116 mA h g-1 at 0.5C with 77% capacity retention at 10C) and notable cycling stability, maintaining 75% of its initial capacity after 3440 charge-discharge cycles at 1C (127 days of continuous cycling). This superior performance compared to reported Al//n-type organic cathode RABs is attributed to the stable 3D porous microstructure and the presence of micro/mesoporosity in IEP-27-SR, which facilitates electrolyte permeability and improves kinetics.

4.
IUCrdata ; 8(Pt 9): x230716, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37818472

RESUMEN

Partial hydrolysis of a sample of [Mg(dme)3][Al(hfip)4]2 crystals led to the formation of the title complex, [Mg(dme)2{HOAl(hfip)2OAl(hfip)3}] (dme = di-meth-oxy-ethane and hfipH = hexa-fluoro-iso-propanol) or [Mg(C4H10O2)2O(OH)Al2(C3HF6O)5]. The magnesium cation exhibits a distorted octa-hedral coordination with two bidentate di-meth-oxy-ethane mol-ecules and a dinuclear aluminate anion, coordinated to Mg2+ via oxido and hydroxido units. The anion is an oxido-bridged species, [HOAl(hfip)2(µ-O)Al(hfip)3]2-, with one Al3+ cation tetra-hedrally coordinated by an oxido (O2-) anion, a hydroxido anion, and two hfip groups, whereas the second Al3+ cation is coordinated by the oxido anion and three hfip groups.

5.
Artículo en Inglés | MEDLINE | ID: mdl-37852614

RESUMEN

Poly(2,2,6,6-tetramethyl-1-piperidinyloxy methacrylate) (PTMA) is one of the most promising organic cathode materials thanks to its relatively high redox potential, good rate performance, and cycling stability. However, being a p-type material, PTMA-based batteries pose additional challenges compared to conventional lithium-ion systems due to the involvement of anions in the redox process. This study presents a comprehensive approach to optimize such batteries, addressing challenges in electrode design, scalability, and cost. Experimental results at a laboratory scale demonstrate high active mass loadings of PTMA electrodes (up to 9.65 mg cm-2), achieving theoretical areal capacities that exceed 1 mAh cm-2. Detailed physics-based simulations and cost and performance analysis clarify the critical role of the electrolyte and the impact of the anion amount in the PTMA redox process, highlighting the benefits and the drawbacks of using highly concentrated electrolytes. The cost and energy density of lithium metal batteries with such high mass loading PTMA cathodes were simulated, finding that their performance is inferior to batteries based on inorganic cathodes even in the most optimistic conditions. In general, this work emphasizes the importance of considering a broader perspective beyond the lab scale and highlights the challenges in upscaling to realistic battery configurations.

6.
J Mater Chem A Mater ; 11(27): 14738-14747, 2023 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-37441279

RESUMEN

Ca metal anode rechargeable batteries are seen as a sustainable high-energy density and high-voltage alternative to the current Li-ion battery technology due to the low redox potential of Ca metal and abundance of Ca. Electrolytes are key enablers on the path towards next-generation battery systems. Within this work, we synthesize a new calcium tetrakis(hexafluoroisopropyloxy) aluminate salt, Ca[Al(hfip)4]2, and benchmark it versus the state-of-the-art boron analogue Ca[B(hfip)4]2. The newly developed aluminate-based electrolyte exhibits improved performance in terms of conductivity, Ca plating/stripping efficiency, and oxidative stability as well as Ca battery cell performance. A marked improvement of 0.5 V higher oxidative stability can pave the path towards high-voltage Ca batteries. A critical issue of solvent quality during salt synthesis is identified as well as solvent decomposition at the Ca metal/electrolyte interface, which leads to passivation of the Ca metal anode. However, the new aluminate salt with preferable electrochemical properties over the existing boron analogue opens up a new area for future Ca battery research based on aluminium compounds.

7.
Artículo en Inglés | MEDLINE | ID: mdl-35642900

RESUMEN

High-performance electrolytes are at the heart of magnesium battery development. Long-term stability along with the low potential difference between plating and stripping processes are needed to consider them for next-generation battery devices. Within this work, we perform an in-depth characterization of the novel Mg[Al(hfip)4]2 salt in different glyme-based electrolytes. Specific importance is given to the influence of water content and the role of additives in the electrolyte. Mg[Al(hfip)4]2-based electrolytes exemplify high tolerance to water presence and the beneficial effect of additives under aggravated cycling conditions. Finally, electrolyte compatibility is tested with three different types of Mg cathodes, spanning different types of electrochemical mechanisms (Chevrel phase, organic cathode, sulfur). Benchmarking with an electrolyte containing a state-of-the-art Mg[B(hfip)4]2 salt exemplifies an improved performance of electrolytes comprising the Mg[Al(hfip)4]2 salt and establishes Mg[Al(hfip)4]2 as a new standard salt for the future Mg battery research.

8.
J Phys Chem C Nanomater Interfaces ; 126(12): 5435-5442, 2022 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-35392436

RESUMEN

X-ray Raman spectroscopy (XRS) is an emerging spectroscopic technique that utilizes inelastic scattering of hard X-rays to study X-ray absorption edges of low Z elements in bulk material. It was used to identify and quantify the amount of carbonyl bonds in a cathode sample, in order to track the redox reaction inside metal-organic batteries during the charge/discharge cycle. XRS was used to record the oxygen K-edge absorption spectra of organic polymer cathodes from different multivalent metal-organic batteries. The amount of carbonyl bond in each sample was determined by modeling the oxygen K-edge XRS spectra with the linear combination of two reference compounds that mimicked the fully charged and the fully discharged phases of the battery. To interpret experimental XRS spectra, theoretical calculations of oxygen K-edge absorption spectra based on density functional theory were performed. Overall, a good agreement between the amount of carbonyl bond present during different stages of battery cycle, calculated from linear combination of standards, and the amount obtained from electrochemical characterization based on measured capacity was achieved. The electrochemical mechanism in all studied batteries was confirmed to be a reduction of double carbonyl bond and the intermediate anion was identified with the help of theoretical calculations. X-ray Raman spectroscopy of the oxygen K-edge was shown to be a viable characterization technique for accurate tracking of the redox reaction inside metal-organic batteries.

9.
ACS Appl Mater Interfaces ; 13(7): 8263-8273, 2021 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-33590762

RESUMEN

Insights into the electrochemical processes occurring at the electrode-electrolyte interface are a crucial step in most electrochemistry domains and in particular in the optimization of the battery technology. However, studying potential-dependent processes at the interface is one of the biggest challenges, both for theoreticians and experimentalists. The challenge is pushed further when stable species also depend on the concentration of specific ligands in the electrolyte, such as chlorides. Herein, we present a general theoretical ab initio methodology to compute a Pourbaix-like diagram of complex electrolytes as a function of electrode potential and anion's chemical potential, that is, concentration. This approach is developed not only for the bulk properties of the electrolytes but also for electrode-electrolyte interfaces. In the case of chlorinated magnesium complexes in dimethoxyethane, we show that the stability domains of the different species are strongly shifted at the interface compared to the bulk of the electrolyte because of the strong local electric fields and charges occurring in the double layer. Thus, as the interfacial stability domains are strongly modified, this approach is necessary to investigate all interface properties that often govern the reaction kinetics, such as solvent degradation at the electrode. Interface Pourbaix diagram is used to give some insights into the improved stability at the Mg anode induced by the addition of chloride. Because of its far-reaching insights, transferability, and wide applicability, the methodology presented herein should serve as a valuable tool not only for the battery community but also for the wider electrochemical one.

10.
ChemSusChem ; 13(9): 2328-2336, 2020 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-32052586

RESUMEN

The redox reaction mechanism of a poly(phenanthrene quinone)/graphene composite (PFQ/rGO) was investigated using operando attenuated total reflection infrared (ATR-IR) spectroscopy during cycling of Li and Mg batteries. The reference phenanthrene quinone and the Li and Mg salts of the hydroquinone monomers were synthesized and their IR spectra were measured. Additionally, IR spectra were calculated using DFT. A comparison of all three spectra allowed us to accurately assign the C=O and C-O- vibration bands and confirm the redox mechanism of the quinone/Li salt of hydroquinone, with radical anion formation as the intermediate product. PFQ/rGO also showed exceptional performance in an Mg battery: A potential of 1.8 V versus Mg/Mg2+ , maximum capacity of 186 mAh g-1 (335 Wh kg-1 of cathode material), and high capacity retention with only 8 % drop/100 cycles. Operando ATR-IR spectroscopy was performed in a Mg/organic system, revealing an analogous redox mechanism to a Li/organic cell.

11.
J Am Chem Soc ; 142(11): 5146-5153, 2020 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-32031361

RESUMEN

The electrochemical degradation of two solvent-based electrolytes for Mg-metal batteries is investigated through a grand canonical density functional theory (DFT) approach. Both electrolytes are highly reactive in the double layer region where the solvated species have no direct contact with the Mg-surface, hence emphasizing that surface reactions are not the only phenomena responsible for electrolyte degradation. Applied to dimethoxyethane (DME) and ethylene carbonate (EC), the present methodology shows that both solvents should thermodynamically decompose in the double layer prior to the Mg2+/Mg0 reduction, leading to electrochemically inactive reaction products. Based on thermodynamic considerations, Mg0 deposition should not be possible, which contrasts with experiments, at least for DME-based electrolytes. This apparent contradiction is here addressed through the rationalization of the electrochemical mechanism underlying solvent electroactivation. An extended operation potential window (OPW) is extracted, in which the Mg2+/Mg0 reduction can compete with electrolyte decomposition, thus enabling battery operation beyond the solvated species thermodynamic stability. The chemical study of the degradation products is in excellent agreement with experiments and offers rationale for the Mg-battery failure in EC electrolyte and capacity fade in DME electrolyte. The potential-dependent approach proposed herein is thus able to successfully tackle the challenging problem of interface electrochemistry. Being fully transferable to any other electrochemical systems, this methodology should provide rational guidelines for the development of viable electrolytes for multivalent batteries and, more generally, energy conversion and storage devices.

12.
Materials (Basel) ; 13(3)2020 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-31973193

RESUMEN

Organic cathode materials are promising cathode materials for multivalent batteries. Among organic cathodes, anthraquinone (AQ) has already been applied to various metal‒organic systems. In this work, we compare electrochemical performance and redox potential of AQ with 1,4-naphthoquinone (NQ) and 1,4-benzoquinone (BQ), both of which offer significantly higher theoretical energy density than AQ and are tested in two different Mg electrolytes. In Mg(TFSI)2-2MgCl2 electrolyte, NQ and BQ exhibit 0.2 and 0.5 V higher potential than AQ, respectively. Furthermore, an upshift of potential for 200 mV in MgCl2-AlCl3 electrolyte versus Mg(TFSI)2-2MgCl2 was confirmed for all used organic compounds. While lower molecular weights of NQ and BQ increase their specific capacity, they also affect the solubility in used electrolytes. Increased solubility lowers long-term capacity retention, confirming the need for the synthesis of NQ and BQ based polymers. Finally, we examine the electrochemical mechanism through ex situ attenuated total reflectance infrared spectroscopy (ATR-IR) and comparison of ex situ cathode spectra with spectra of individual electrode components. For the first time, magnesium anthracene-9,10-bis(olate), a discharged form of AQ moiety, is synthesized, which allows us to confirm the electrochemical mechanism of AQ cathode in Mg battery system.

13.
Nat Commun ; 9(1): 661, 2018 02 14.
Artículo en Inglés | MEDLINE | ID: mdl-29445156

RESUMEN

Organic materials are receiving an increasing amount of attention as electrode materials for future post lithium-ion batteries due to their versatility and sustainability. However, their electrochemical reaction mechanism has seldom been investigated. This is a direct consequence of a lack of straightforward and broadly available analytical techniques. Herein, a straightforward in operando attenuated total reflectance infrared spectroscopy method is developed that allows visualization of changes of all infrared active bands that occur as a consequence of reduction/oxidation processes. In operando infrared spectroscopy is applied to the analysis of three different organic polymer materials in lithium batteries. Moreover, this in operando method is further extended to investigation of redox reaction mechanism of poly(anthraquinonyl sulfide) in a magnesium battery, where a reduction of carbonyl bond is demonstrated as a mechanism of electrochemical activity. Conclusions done by the in operando results are complemented by synthesis of model compound and density functional theory calculation of infrared spectra.

14.
Front Chem ; 6: 634, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30619838

RESUMEN

Recent years have seen an intense and renewed interest in the Mg battery research, naming Mg-S the ≫Holy Grail≪ battery, and expectations that Mg battery system will be able to compete and surpass Li-ion batteries in a matter of years. Considerable progress has been achieved in the field of Mg electrolytes, where several new electrolytes with improved electrochemical performance and favorable chemical properties (non-corrosive, non-nucleophilic) were synthesized. Development in the field of cathodes remains a bit more elusive, with inorganic, sulfur, and organic cathodes all showing their upsides and downsides. This review highlights the recent progress in the field of Mg battery cathodes, paying a special attention to the performance and comparison of the different types of the cathodes. It also aims to define advantages and key challenges in the development of each type of cathodes and finally specific questions that should be addressed in the future research.

15.
ChemSusChem ; 8(24): 4128-32, 2015 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-26610185

RESUMEN

Mg batteries are a promising battery technology that could lead to safer and significantly less expensive non-aqueous batteries with energy densities comparable or even better than state-of-the-art Li-ion batteries. Although the first prototype Mg battery using stable Mo6S8 as cathode was introduced over fifteen years ago, major challenges remain to be solved. In particular, the design of high energy cathode materials and the development of non-corrosive electrolytes with high oxidative stability are issues that need to be tackled. Herein, we present a new, general, and robust approach towards achieving stable cycling of Mg batteries. The core of our approach is the use of stable polymer cathode and Mg powder anode coupled with non-nucleophilic electrolytes. Our systems exhibit an excellent rate capability and significant improvement in electrochemical stability.


Asunto(s)
Antraquinonas/química , Suministros de Energía Eléctrica , Magnesio/química , Polímeros/química , Electroquímica , Electrodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...