Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 14(1): 11283, 2024 05 17.
Artículo en Inglés | MEDLINE | ID: mdl-38760416

RESUMEN

Several lines of evidence demonstrate that the brain histaminergic system is fundamental for cognitive processes and the expression of memories. Here, we investigated the effect of acute silencing or activation of histaminergic neurons in the hypothalamic tuberomamillary nucleus (TMNHA neurons) in vivo in both sexes in an attempt to provide direct and causal evidence of the necessary role of these neurons in recognition memory formation and retrieval. To this end, we compared the performance of mice in two non-aversive and non-rewarded memory tests, the social and object recognition memory tasks, which are known to recruit different brain circuitries. To directly establish the impact of inactivation or activation of TMNHA neurons, we examined the effect of specific chemogenetic manipulations during the formation (acquisition/consolidation) or retrieval of recognition memories. We consistently found that acute chemogenetic silencing of TMNHA neurons disrupts the formation or retrieval of both social and object recognition memory in males and females. Conversely, acute chemogenetic activation of TMNHA neurons during training or retrieval extended social memory in both sexes and object memory in a sex-specific fashion. These results suggest that the formation or retrieval of recognition memory requires the tonic activity of histaminergic neurons and strengthen the concept that boosting the brain histaminergic system can promote the retrieval of apparently lost memories.


Asunto(s)
Neuronas , Reconocimiento en Psicología , Animales , Femenino , Masculino , Neuronas/metabolismo , Neuronas/fisiología , Ratones , Reconocimiento en Psicología/fisiología , Histamina/metabolismo , Ratones Endogámicos C57BL , Área Hipotalámica Lateral/metabolismo , Área Hipotalámica Lateral/fisiología , Recuerdo Mental/fisiología
2.
Neurobiol Dis ; 161: 105542, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34737043

RESUMEN

BACKGROUND: Vitamin A (VitA), via its active metabolite retinoic acid (RA), is critical for the maintenance of memory function with advancing age. Although its role in Alzheimer's disease (AD) is not well understood, data suggest that impaired brain VitA signaling is associated with the accumulation of ß-amyloid peptides (Aß), and could thus contribute to the onset of AD. METHODS: We evaluated the protective action of a six-month-long dietary VitA-supplementation (20 IU/g), starting at 8 months of age, on the memory and the neuropathology of the 3xTg-AD mouse model of AD (n = 11-14/group; including 4-6 females and 7-8 males). We also measured protein levels of Retinoic Acid Receptor ß (RARß) and Retinoid X Receptor γ (RXRγ) in homogenates from the inferior parietal cortex of 60 participants of the Religious Orders study (ROS) divided in three groups: no cognitive impairment (NCI) (n = 20), mild cognitive impairment (MCI) (n = 20) and AD (n = 20). RESULTS: The VitA-enriched diet preserved spatial memory of 3xTg-AD mice in the Y maze. VitA-supplementation affected hippocampal RXR expression in an opposite way according to sex by tending to increase in males and decrease in females their mRNA expression. VitA-enriched diet also reduced the amount of hippocampal Aß40 and Aß42, as well as the phosphorylation of tau protein at sites Ser396/Ser404 (PHF-1) in males. VitA-supplementation had no effect on tau phosphorylation in females but worsened their hippocampal Aß load. However, the expression of Rxr-ß in the hippocampus was negatively correlated with the amount of both soluble and insoluble Aß in both males and females. Western immunoblotting in the human cortical samples of the ROS study did not reveal differences in RARß levels. However, it evidenced a switch from a 60-kDa-RXRγ to a 55-kDa-RXRγ in AD, correlating with ante mortem cognitive decline and the accumulation of neuritic plaques in the brain cortex. CONCLUSION: Our data suggest that (i) an altered expression of RXRs receptors is a contributor to ß-amyloid pathology in both humans and 3xTg-AD mice, (ii) a chronic exposure of 3xTg-AD mice to a VitA-enriched diet may be protective in males, but not in females.


Asunto(s)
Enfermedad de Alzheimer , Vitamina A , Enfermedad de Alzheimer/metabolismo , Péptidos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Animales , Dieta , Modelos Animales de Enfermedad , Femenino , Hipocampo/metabolismo , Humanos , Masculino , Ratones , Ratones Transgénicos , Receptores X Retinoide/metabolismo , Proteínas tau/metabolismo
3.
Int J Obes (Lond) ; 45(3): 588-598, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33223517

RESUMEN

BACKGROUND: Early consumption of obesogenic diets, rich in saturated fat and added sugar, is associated with a plethora of biological dysfunctions, at both peripheral and brain levels. Obesity is also linked to decreased vitamin A bioavailability, an essential molecule for brain plasticity and memory function. METHODS: Here we investigated in mice whether dietary vitamin A supplementation (VAS) could prevent some of the metabolic, microbiota, neuronal and cognitive alterations induced by obesogenic, high-fat and high-sugar diet (HFSD) exposure from weaning to adulthood, i.e. covering periadolescent period. RESULTS: As expected, VAS was effective in enhancing peripheral vitamin A levels as well as hippocampal retinoic acid levels, the active metabolite of vitamin A, regardless of the diet. VAS attenuated HFSD-induced excessive weight gain, without affecting metabolic changes, and prevented alterations of gut microbiota α-diversity. In HFSD-fed mice, VAS prevented recognition memory deficits but had no effect on aversive memory enhancement. Interestingly, VAS alleviated both HFSD-induced higher neuronal activation and lower glucocorticoid receptor phosphorylation in the hippocampus after training. CONCLUSION: Dietary VAS was protective against the deleterious effects of early obesogenic diet consumption on hippocampal function, possibly through modulation of the gut-brain axis.


Asunto(s)
Cognición/efectos de los fármacos , Dieta Alta en Grasa/efectos adversos , Suplementos Dietéticos , Microbioma Gastrointestinal/efectos de los fármacos , Vitamina A , Animales , Eje Cerebro-Intestino/efectos de los fármacos , Hipocampo/química , Hipocampo/efectos de los fármacos , Masculino , Memoria/efectos de los fármacos , Ratones , Ratones Endogámicos C57BL , Vitamina A/administración & dosificación , Vitamina A/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...