RESUMEN
Heart failure with preserved ejection fraction (HFpEF) is a major public health concern. Its outcome is poor and, as of today, barely any treatments have been able to decrease its morbidity or mortality. Cardiosphere-derived cells (CDCs) are heart cell products with anti-fibrotic, anti-inflammatory and angiogenic properties. Here, we tested the efficacy of CDCs in improving left ventricular (LV) structure and function in pigs with HFpEF. Fourteen chronically instrumented pigs received continuous angiotensin II infusion for 5 weeks. LV function was investigated through hemodynamic measurements and echocardiography at baseline, after 3 weeks of angiotensin II infusion before three-vessel intra-coronary CDC (n = 6) or placebo (n = 8) administration and 2 weeks after treatment (i.e., at completion of the protocol). As expected, arterial pressure was significantly and similarly increased in both groups. This was accompanied by LV hypertrophy that was not affected by CDCs. LV systolic function remained similarly preserved during the whole protocol in both groups. In contrast, LV diastolic function was impaired (increases in Tau, LV end-diastolic pressure as well as E/A, E/E'septal and E/E'lateral ratios) but CDC treatment significantly improved all of these parameters. The beneficial effect of CDCs on LV diastolic function was not explained by reduced LV hypertrophy or increased arteriolar density; however, interstitial fibrosis was markedly reduced. Three-vessel intra-coronary administration of CDCs improves LV diastolic function and reduces LV fibrosis in this hypertensive model of HFpEF.
Asunto(s)
Insuficiencia Cardíaca , Animales , Angiotensina II , Fibrosis , Hipertrofia Ventricular Izquierda , Volumen Sistólico , Porcinos , Función Ventricular IzquierdaRESUMEN
BACKGROUND: Coronary microvascular obstruction also known as no-reflow phenomenon is a major issue during myocardial infarction that bears important prognostic implications. Alterations of the microvascular network remains however challenging to assess as there is no imaging modality in the clinics that can image directly the coronary microvascular vessels. Ultrasound Localization Microscopy (ULM) imaging was recently introduced to map microvascular flows at high spatial resolution (â¼10 µm). In this study, we developed an approach to image alterations of the microvascular coronary flow in ex vivo perfused swine hearts. METHODS: A porcine model of myocardial ischemia-reperfusion was used to obtain microvascular coronary alterations and no-reflow. Four female hearts with myocardial infarction in addition to 6 controls were explanted and placed immediately in a dedicated preservation and perfusion box manufactured for ultrasound imaging. Microbubbles (MB) were injected into the vasculature to perform Ultrasound Localization Microscopy (ULM) imaging and a linear ultrasound probe mounted on a motorized device was used to scan the heart on multiple slices. The coronary microvascular anatomy and flow velocity was reconstructed using dedicated ULM algorithms and analyzed quantitatively. FINDINGS: We were able to image the coronary microcirculation of ex vivo swine hearts at a resolution of tens of microns and measure flow velocities ranging from 10 mm/s in arterioles up to more than 200 mm/s in epicardial arteries. Under different aortic perfusion pressures, we measured in large arteries of a subset of control hearts an increase of flow velocity from 31 ± 11 mm/s at 87 mmHg to 47 ± 17 mm/s at 132 mmHg (N = 3 hearts, P < 0.05). This increase was compared with a control measurement with a flowmeter in the aorta. We also compared 6 control hearts to 4 hearts in which no-reflow was induced by the occlusion and reperfusion of a coronary artery. Using average MB velocity and average density of MB per unit of surface as two ULM quantitative markers of perfusion, we were able to detect areas of coronary no-reflow in good agreement with a control anatomical pathology analysis of the cardiac tissue. In the no-reflow zone, we measured an average perfusion of 204 ± 305 MB/mm2 compared to 3182 ± 1302 MB/mm2 in the surrounding re-perfused area. INTERPRETATION: We demonstrated this approach can directly image and quantify coronary microvascular obstruction and no-reflow on large mammal perfused hearts. This is a first step for noninvasive, quantitative and affordable assessment of the coronary microcirculation function and particularly coronary microvascular anatomy in the infarcted heart. This approach has the potential to be extended to other clinical situations characterized by microvascular dysfunction. FUNDING: This study was supported by the French National Research Agency (ANR) under ANR-21-CE19-0002 grant agreement.
Asunto(s)
Microscopía , Infarto del Miocardio , Porcinos , Femenino , Animales , Microcirculación , Prueba de Estudio Conceptual , Infarto del Miocardio/diagnóstico por imagen , Vasos Coronarios/diagnóstico por imagen , MamíferosRESUMEN
BACKGROUND: Understanding and effectively treating dystrophin-deficient cardiomyopathy is of high importance for Duchenne muscular dystrophy (DMD) patients due to their prolonged lifespan. We used two-dimensional speckle tracking echocardiography to analyze more deeply the non-uniformity of myocardial strain within the left ventricle during the progression of cardiomyopathy in golden retriever muscular dystrophy (GRMD) dogs. METHODS: The circumferential strain (CS) and longitudinal strain (LS) of left ventricular (LV) endocardial, middle and epicardial layers were analyzed from three parasternal short-axis views and three apical views, respectively, in GRMD (n = 22) and healthy control dogs (n = 7) from 2 to 24 months of age. RESULTS: In GRMD dogs, despite normal global systolic function (normal LV fractional shortening and ejection fraction), a reduction in systolic CS was detected in the three layers of the LV apex but not in the LV middle-chamber and base at 2 months of age. This spatial heterogeneity in CS progressed with age, whereas a decrease in systolic LS could be detected early at 2 months of age in the three layers of the LV wall from three apical views. CONCLUSIONS: Analyzing the evolution of myocardial CS and LS in GRMD dogs reveals spatial and temporal non-uniform alterations of LV myocardial strain, providing new insights into the progression of dystrophin-deficient cardiomyopathy in this relevant model of DMD.
RESUMEN
OBJECTIVE: To assess the accuracy of coronary thermodilution measurements made with the RayFlow® infusion catheter. BACKGROUND: Measurements of absolute coronary blood flow (ABF) and absolute microvascular resistance (Rµ ) by continuous coronary thermodilution can be obtained in humans but their accuracy using a novel dedicated infusion catheter has not yet been validated. We compared ABF values obtained at different infusion rates to coronary blood flow (CBF) values obtained using flow probes, in swine. METHODS: Twelve domestic swine were instrumented with coronary flow probes placed around the left anterior descending and circumflex coronary arteries. ABF was assessed with the RayFlow® infusion catheter during continuous saline infusion at fixed rates of 5 (n = 14), 10 (n = 15), 15 (n = 19), and 20 (n = 12) ml/min. RESULTS: In the 60 measurements, ABF measured using thermodilution averaged 41 ± 17 ml/min (range from 17 to 90) and CBF values obtained with the coronary flow probes averaged 37 ± 18 ml/min (range from 8 to 87). The corresponding Rµ values were 1532 ± 791 (range from 323 to 5103) and 1903 ± 1162 (range from 287 to 6000) Woods units using thermodilution and coronary flow probe assessments, respectively. ABF and Rµ values measured using thermodilution were significantly correlated with the corresponding measurements obtained using coronary flow probes (R = 0.84 [0.73-0.95] and R = 0.80 [0.69-0.88], respectively). CONCLUSIONS: ABF and Rµ assessed by continuous saline infusion through a RayFlow® catheter closely correlate with measurements obtained with the gold standard coronary flow probes in a swine model.
Asunto(s)
Circulación Coronaria , Termodilución , Animales , Velocidad del Flujo Sanguíneo , Circulación Coronaria/fisiología , Vasos Coronarios , Humanos , Porcinos , Resultado del TratamientoRESUMEN
Acute myocardial infarction is a common condition responsible for heart failure and sudden death. Here, we show that following acute myocardial infarction in mice, CD8+ T lymphocytes are recruited and activated in the ischemic heart tissue and release Granzyme B, leading to cardiomyocyte apoptosis, adverse ventricular remodeling and deterioration of myocardial function. Depletion of CD8+ T lymphocytes decreases apoptosis within the ischemic myocardium, hampers inflammatory response, limits myocardial injury and improves heart function. These effects are recapitulated in mice with Granzyme B-deficient CD8+ T cells. The protective effect of CD8 depletion on heart function is confirmed by using a model of ischemia/reperfusion in pigs. Finally, we reveal that elevated circulating levels of GRANZYME B in patients with acute myocardial infarction predict increased risk of death at 1-year follow-up. Our work unravels a deleterious role of CD8+ T lymphocytes following acute ischemia, and suggests potential therapeutic strategies targeting pathogenic CD8+ T lymphocytes in the setting of acute myocardial infarction.
Asunto(s)
Linfocitos T CD8-positivos/metabolismo , Granzimas/genética , Granzimas/metabolismo , Corazón/fisiopatología , Remodelación Ventricular/fisiología , Animales , Apoptosis , Linfocitos T CD8-positivos/patología , Modelos Animales de Enfermedad , Femenino , Insuficiencia Cardíaca/metabolismo , Insuficiencia Cardíaca/patología , Proteínas de Homeodominio/genética , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Infarto del Miocardio/metabolismo , Miocardio/patología , Porcinos , TranscriptomaRESUMEN
Background Absolute hyperemic coronary blood flow and microvascular resistances can be measured by continuous thermodilution with a dedicated infusion catheter. We aimed to determine the mechanisms of this hyperemic response in animal. Methods and Results Twenty open chest pigs were instrumented with flow probes on coronary arteries. The following possible mechanisms of saline-induced hyperemia were explored compared with maximal hyperemia achieve with adenosine by testing: (1) various infusion rates; (2) various infusion content and temperature; (3) NO production inhibition with L-arginine methyl ester and endothelial denudation; (4) effects of vibrations generated by rotational atherectomy and of infusion through one end-hole versus side-holes. Saline infusion rates of 5, 10 and 15 mL/min did not reach maximal hyperemia as compared with adenosine. Percentage of coronary blood flow expressed in percent of the coronary blood flow after adenosine were 48±17% at baseline, 57±18% at 5 mL/min, 65±17% at 10 mL/min, 82±26% at 15 mL/min and 107±18% at 20 mL/min. Maximal hyperemia was observed during infusion of both saline at body temperature and glucose 5%, after endothelial denudation, l-arginine methyl ester administration, and after stent implantation. The activation of a Rota burr in the first millimeters of the epicardial artery also induced maximal hyperemia. Maximal hyperemia was achieved by infusion through lateral side-holes but not through an end-hole catheter. Conclusions Infusion of saline at 20 mL/min through a catheter with side holes in the first millimeters of the epicardial artery induces maximal hyperemia. The data indicate that this vasodilation is related neither to the composition/temperature of the indicator nor is it endothelial mediated. It is suggested that it could be elicited by epicardial wall vibrations.
Asunto(s)
Circulación Coronaria , Hiperemia/fisiopatología , Termodilución/métodos , Animales , Circulación Coronaria/fisiología , Electrocardiografía , Femenino , Solución Salina/farmacología , PorcinosRESUMEN
Sonic hedgehog (SHH) signaling pathway is involved in embryonic tissue patterning and development. Our previous work identified, in small rodent model of ischemia reperfusion, SHH as a specific efficient tool to reduce infarct size and subsequent arrhythmias by preventing ventricular repolarization abnormalities. The goal of the present study was to provide a proof of concept of the cardioprotective effect of SHH ligand in a porcine model of acute ischemia. Methods: The antiarrhythmic effect of SHH, either by a recombinant peptide (N-SHH) or shed membrane microparticles harboring SHH ligand (MPsSHH+), was evaluated in a first set of pigs following a short (25 min) coronary artery occlusion (CAO) followed by 24 hours-reperfusion (CAR) (Protocol A). The infarct-limiting effect was evaluated on a second set of pigs with 40 min of coronary artery occlusion followed by 24 hours reperfusion (Protocol B). Electrocardiogram (ECG) was recorded and arrhythmia's scores were evaluated. Area at risk and myocardial infarct size were quantified. Results: In protocol A, administration of N-SHH 15 min. after the onset of coronary occlusion significantly reduced the occurrence of ventricular fibrillation compared to control group. Evaluation of arrhythmic score showed that N-SHH treatment significantly reduced the overall occurrence of arrhythmias. In protocol B, massive infarction was observed in control animals. Either N-SHH or MPsSHH+ treatment reduced significantly the infarct size with a concomitant increase of salvaged area. The reduction in infarct size was both accompanied by a significant decrease in systemic biomarkers of myocardial injury, i.e., cardiac troponin I and fatty acid-binding protein and an increase of eNOS activation. Conclusions: We show for the first time in a large mammalian model that the activation of the SHH pathway by N-SHH or MPsSHH+ offers a potent protection of the heart to ischemia-reperfusion by preventing the reperfusion arrhythmias, reducing the infarct area and the circulating levels of biomarkers for myocardial injury. These data open up potentially theranostic prospects for patients suffering from myocardial infarction to prevent the occurrence of arrhythmias and reduce myocardial tissue damage.
Asunto(s)
Antiarrítmicos/uso terapéutico , Arritmias Cardíacas/tratamiento farmacológico , Corazón/efectos de los fármacos , Proteínas Hedgehog/uso terapéutico , Infarto del Miocardio/tratamiento farmacológico , Isquemia Miocárdica/tratamiento farmacológico , Daño por Reperfusión Miocárdica/tratamiento farmacológico , Animales , Miocardio , PorcinosRESUMEN
BACKGROUND: Alterations in intracellular Na+ and Ca2+ have been observed in patients with Duchenne muscular dystrophy (DMD) and in animal models of DMD, and inhibition of Na+-H+ exchanger 1 (NHE1) by rimeporide has previously demonstrated cardioprotective effects in animal models of myocardial ischemia and heart failure. Since heart failure is becoming a predominant cause of death in DMD patients, this study aimed to demonstrate a cardioprotective effect of chronic administration of rimeporide in a canine model of DMD. METHODS: Golden retriever muscular dystrophy (GRMD) dogs were randomized to orally receive rimeporide (10 mg/kg, twice a day) or placebo from 2 months to 1 year of age. Left ventricular (LV) function was assessed by conventional and advanced echocardiography. RESULTS: Compared with placebo-treated GRMD, LV function deterioration with age was limited in rimeporide-treated GRMD dogs as indicated by the preservation of LV ejection fraction as well as overall cardiac parameters different from placebo-treated dogs, as revealed by composite cardiac scores and principal component analysis. In addition, principal component analysis clustered rimeporide-treated GRMD dogs close to healthy control dogs. CONCLUSIONS: Chronic administration of the NHE1 inhibitor rimeporide exerted a protective effect against LV function decline in GRMD dogs. This study provides proof of concept to explore the cardiac effects of rimeporide in DMD patients.
Asunto(s)
Distrofia Muscular de Duchenne , Función Ventricular Izquierda , Animales , Perros , Antiarrítmicos , Modelos Animales de Enfermedad , Ecocardiografía , Corazón , Distrofia Muscular de Duchenne/tratamiento farmacológicoRESUMEN
BACKGROUND: Dystrophin-deficient cardiomyopathy is becoming the dominant cause of death in patients with Duchenne muscular dystrophy (DMD), but its developmental process remains elusive. This study aimed to assess the development of left ventricular (LV) dysfunction that mimics DMD pathologies in golden retriever muscular dystrophy (GRMD) dogs. METHODS: Transthoracic echocardiography was sequentially performed in GRMD dogs (n = 23) and age-matched healthy littermates (n = 7) from 2 to 24 months old. Conventional, tissue Doppler imaging, and speckle-tracking echocardiography parameters were analyzed. RESULTS: At 2 months of age, GRMD dogs showed a pathologic decrease in the subendocardial-subepicardial gradient of radial systolic myocardial velocity along with altered LV twist and longitudinal strain, all being aggravated with age (analysis of variance, P < .001). Receiver operator characteristic curve analysis showed good ability to discriminate normal from GRMD dogs. LV ejection fraction was significantly decreased in GRMD dogs starting from 9 months and reached a pathologic level (<50%) at 24 months. CONCLUSIONS: The development of cardiomyopathy in GRMD dogs was characterized by subendocardial dysfunction, altered LV twist, and reduced longitudinal strain at a very young age to overall LV dysfunction in adults with transmural dysfunction, reduced LV ejection fraction and diastolic abnormalities, and even heart failure. This indicates the necessity to evaluate LV transmural myocardial velocity gradient, twist, and longitudinal strain in the early childhood of DMD patients.
Asunto(s)
Ecocardiografía/métodos , Ventrículos Cardíacos/diagnóstico por imagen , Distrofia Muscular de Duchenne/complicaciones , Contracción Miocárdica/fisiología , Volumen Sistólico/fisiología , Disfunción Ventricular Izquierda/etiología , Función Ventricular Izquierda/fisiología , Animales , Modelos Animales de Enfermedad , Perros , Ventrículos Cardíacos/fisiopatología , Distrofia Muscular de Duchenne/diagnóstico , Disfunción Ventricular Izquierda/diagnóstico , Disfunción Ventricular Izquierda/fisiopatologíaRESUMEN
The mechanical and cellular relationships between systole and diastole during left ventricular (LV) dysfunction remain to be established. LV contraction-relaxation coupling was examined during LV hypertrophy induced by chronic hypertension. Chronically instrumented pigs received angiotensin II infusion for4weeks to induce chronic hypertension (133⯱â¯7â¯mmHg vs 98⯱â¯5â¯mmHg for mean arterial pressure at Day 28 vs 0, respectively) and LV hypertrophy. LV function was investigated with the instrumentation and echocardiography for LV twist-untwist assessment before and after dobutamine infusion. The cellular mechanisms were investigated by exploring the intracellular Ca2+ handling. At Day 28, pigs exhibited LV hypertrophy with LV diastolic dysfunction (impaired LV isovolumic relaxation, increased LV end-diastolic pressure, decreased and delayed LV untwisting rate) and LV systolic dysfunction (impaired LV isovolumic contraction and twist) although LV ejection fraction was preserved. Isolated cardiomyocytes exhibited altered shortening and lengthening. Interestingly, contraction-relaxation coupling remained preserved both in vivo and in vitro during LV hypertrophy. LV systolic and diastolic dysfunctions were associated to post-translational remodeling and dysfunction of the type 2 cardiac ryanodine receptor/Ca2+ release channel (RyR2), i.e., PKA hyperphosphorylation of RyR2, depletion of calstabin 2 (FKBP12.6), RyR2 leak and hypersensitivity of RyR2 to cytosolic Ca2+ during both contraction and relaxation phases. In conclusion, LV contraction-relaxation coupling remained preserved during chronic hypertension despite LV systolic and diastolic dysfunctions. This implies that LV diastolic dysfunction is accompanied by LV systolic dysfunction. At the cellular level, this is linked to sarcoplasmic reticulum Ca2+ leak through PKA-mediated RyR2 hyperphosphorylation and depletion of its stabilizing partner.
Asunto(s)
Diástole/fisiología , Hipertensión/fisiopatología , Sístole/fisiología , Animales , Western Blotting , Ecocardiografía , Frecuencia Cardíaca/fisiología , Hipertrofia Ventricular Izquierda/metabolismo , Hipertrofia Ventricular Izquierda/fisiopatología , Inmunoprecipitación , Canal Liberador de Calcio Receptor de Rianodina/metabolismo , Porcinos , Disfunción Ventricular Izquierda/metabolismo , Disfunción Ventricular Izquierda/fisiopatología , Función Ventricular Izquierda/fisiologíaRESUMEN
BACKGROUND: Left ventricular (LV) dysfunction develops during LV hypertrophy and particularly during tachycardia. Thus we investigated the effects of heart rate (HR) reduction with ivabradine, an If-channel blocker, on LV twist and untwist which represents myocardial deformation occurring during the overall systole and diastole and therefore provide valuable evaluation of global LV systolic and diastolic function. METHODS: Eight chronically instrumented pigs receiving continuous angiotensin II infusion during 28days to induce chronic hypertension and LV hypertrophy. Measurements were performed at Days 0 and 28 after stopping angiotensin II infusion in the presence and absence of ivabradine. RESULTS: At Day 0, reducing HR from 75±3 to 55±2beats/min with ivabradine did not affect LV twist but slowed LV untwist along with an increase in LV end-diastolic pressure. At Day 28, LV posterior and septal wall thickness as well as the estimated LV mass increased, indicating LV hypertrophy. LV twist and untwist were significantly reduced by 33±4% from 16±1° and 32±6% from -154±9°/s, respectively, showing global LV systolic and diastolic dysfunction. In this context, ivabradine decreased HR by 25% from 86±5beats/min and significantly improved LV twist from 11±1 to 14±1° and LV untwist from -104±8 to -146±5°/s. CONCLUSIONS: Administration of ivabradine during chronic hypertension and LV hypertrophy improved LV twist and untwist. This further supports the beneficial effect of this drug on both LV systolic and diastolic function during the development of LV hypertrophy.
Asunto(s)
Benzazepinas/uso terapéutico , Fármacos Cardiovasculares/uso terapéutico , Hipertensión/tratamiento farmacológico , Disfunción Ventricular Izquierda/tratamiento farmacológico , Animales , Enfermedad Crónica , Femenino , Hipertensión/complicaciones , Hipertensión/diagnóstico por imagen , Hipertrofia Ventricular Izquierda/complicaciones , Hipertrofia Ventricular Izquierda/diagnóstico por imagen , Hipertrofia Ventricular Izquierda/tratamiento farmacológico , Ivabradina , Porcinos , Disfunción Ventricular Izquierda/complicaciones , Disfunción Ventricular Izquierda/diagnóstico por imagenRESUMEN
OBJECTIVES: The aim of this study was to investigate the potential of coronary ultrafast Doppler angiography (CUDA), a novel vascular imaging technique based on ultrafast ultrasound, to image noninvasively with high sensitivity the intramyocardial coronary vasculature and quantify the coronary blood flow dynamics. BACKGROUND: Noninvasive coronary imaging techniques are currently limited to the observation of the epicardial coronary arteries. However, many studies have highlighted the importance of the coronary microcirculation and microvascular disease. METHODS: CUDA was performed in vivo in open-chest procedures in 9 swine. Ultrafast plane-wave imaging at 2,000 frames/s was combined to an adaptive spatiotemporal filtering to achieve ultrahigh-sensitive imaging of the coronary blood flows. Quantification of the flow change was performed during hyperemia after a 30-s left anterior descending (LAD) artery occlusion followed by reperfusion and was compared to gold standard measurements provided by a flowmeter probe placed at a proximal location on the LAD (n = 5). Coronary flow reserve was assessed during intravenous perfusion of adenosine. Vascular damages were evaluated during a second set of experiments in which the LAD was occluded for 90 min, followed by 150 min of reperfusion to induce myocardial infarction (n = 3). Finally, the transthoracic feasibility of CUDA was assessed on 2 adult and 2 pediatric volunteers. RESULTS: Ultrahigh-sensitive cine loops of venous and arterial intramyocardial blood flows were obtained within 1 cardiac cycle. Quantification of the coronary flow changes during hyperemia was in good agreement with gold standard measurements (r2 = 0.89), as well as the assessment of coronary flow reserve (2.35 ± 0.65 vs. 2.28 ± 0.84; p = NS). On the infarcted animals, CUDA images revealed the presence of strong hyperemia and the appearance of abnormal coronary vessel structures in the reperfused LAD territory. Finally, the feasibility of transthoracic coronary vasculature imaging was shown on 4 human volunteers. CONCLUSIONS: Ultrafast Doppler imaging can map the coronary vasculature with high sensitivity and quantify intramural coronary blood flow changes.
Asunto(s)
Vasos Coronarios/diagnóstico por imagen , Ecocardiografía Doppler en Color/métodos , Reserva del Flujo Fraccional Miocárdico , Infarto del Miocardio/diagnóstico por imagen , Imagen de Perfusión Miocárdica/métodos , Adulto , Animales , Velocidad del Flujo Sanguíneo , Niño , Preescolar , Vasos Coronarios/fisiopatología , Modelos Animales de Enfermedad , Estudios de Factibilidad , Femenino , Humanos , Hiperemia/diagnóstico por imagen , Hiperemia/fisiopatología , Infarto del Miocardio/fisiopatología , Valor Predictivo de las Pruebas , Sus scrofaRESUMEN
Chronic hypertension is associated with left ventricular (LV) hypertrophy and LV diastolic dysfunction with impaired isovolumic relaxation and abnormal LV filling. Increased heart rate (HR) worsens these alterations. We investigated whether the I f channel blocker ivabradine exerts beneficial effects on LV filling dynamic. In this setting, we also evaluated the relationship between LV filling and isovolumic contraction as a consequence of contraction-relaxation coupling. Therefore, hypertension was induced by a continuous infusion of angiotensin II during 28 days in 10 chronically instrumented pigs. LV function was investigated after stopping angiotensin II infusion to offset the changes in loading conditions. In the normal heart, LV relaxation filling, LV early filling, LV peak early filling rate were positively correlated to HR. In contrast, these parameters were significantly reduced at day 28 vs. day 0 (18, 42, and 26 %, respectively) despite the increase in HR (108 ± 6 beats/min vs. 73 ± 2 beats/min, respectively). These abnormalities were corrected by acute administration of ivabradine (1 mg/kg, iv). Ivabradine still exerted these effects when HR was controlled at 150 beats/min by atrial pacing. Interestingly, LV relaxation filling, LV early filling and LV peak early filling were strongly correlated with both isovolumic contraction and relaxation. In conclusion, ivabradine improves LV filling during chronic hypertension. The mechanism involves LV contraction-relaxation coupling through normalization of isovolumic contraction and relaxation as well as HR-independent mechanisms.
Asunto(s)
Benzazepinas/farmacología , Fármacos Cardiovasculares/farmacología , Hipertensión/fisiopatología , Función Ventricular Izquierda/efectos de los fármacos , Animales , Modelos Animales de Enfermedad , Femenino , Hemodinámica/efectos de los fármacos , Hemodinámica/fisiología , Ivabradina , Porcinos , Función Ventricular Izquierda/fisiologíaRESUMEN
During chronic hypertension, increases in heart rate (HR) or adrenergic stimulation are associated with maladaptive left ventricular responses as isovolumic contraction and relaxation durations failed to reduce, impeding filling. We, therefore, investigated the effects of acute selective HR reduction with ivabradine on left ventricular dysfunction during chronic hypertension. Accordingly, chronically instrumented pigs received angiotensin II infusion during 4 weeks to induce chronic hypertension. Left ventricular function was investigated while angiotensin II infusion was stopped. A single intravenous dose of ivabradine was administered at days 0 and 28. Dobutamine infusion was also performed. HR was increased at day 28 versus day 0. Paradoxically, both isovolumic contraction and relaxation times failed to reduce and remained unchanged (57±3 versus 58±3 ms and 74±3 versus 70±3 at day 28 versus day 0, respectively). At day 28, ivabradine significantly reduced HR by 27%. Concomitantly, abnormal ventricular responses were corrected because both isovolumic contraction and relaxation times were significantly reduced while filling time was improved. Similarly at day 28, maladaptive responses of isovolumic contraction and relaxation to dobutamine were no longer observed during HR reduction with ivabradine. Correction of HR reduction with pacing showed that non-HR-related mechanisms also participated to these beneficial effects. In this model of chronic hypertension and left ventricular hypertrophy, acute HR reduction with ivabradine corrects the maladaptive responses of cardiac cycle phases by restoring a normal profile for isovolumic contraction and relaxation both at rest and under adrenergic stimuli, ultimately favoring filling.
Asunto(s)
Benzazepinas/uso terapéutico , Ventrículos Cardíacos/fisiopatología , Hipertensión/tratamiento farmacológico , Función Ventricular Izquierda/efectos de los fármacos , Remodelación Ventricular/fisiología , Animales , Estado de Conciencia , Canales Catiónicos Regulados por Nucleótidos Cíclicos , Modelos Animales de Enfermedad , Femenino , Ventrículos Cardíacos/efectos de los fármacos , Hipertensión/fisiopatología , Ivabradina , Porcinos , Resultado del TratamientoRESUMEN
Systolic function is often evaluated by measuring ejection fraction and its preservation is often assimilated with the lack of impairment of systolic left ventricular (LV) function. Considering the left ventricle as a muscular pump, we explored LV function during chronic hypertension independently of increased afterload conditions. Fourteen conscious and chronically instrumented pigs received continuous infusion of either angiotensin II (n = 8) or saline (n = 6) during 28 days. Hemodynamic recordings were regularly performed in the presence and 1 h after stopping angiotensin II infusion to evaluate intrinsic LV function. Throughout the protocol, the mean arterial pressure steadily increased by 55 ± 4 mmHg in angiotensin II-treated animals. There were no significant changes in stroke volume, LV fractional shortening or LV wall thickening, indicating the lack of alterations in LV ejection. In contrast, we observed maladaptive changes with (1) the lack of reduction in isovolumic contraction and relaxation durations with heart rate increases, (2) abnormally blunted isovolumic contraction and relaxation responses to dobutamine and (3) a linear correlation between isovolumic contraction and relaxation durations. None of these changes were observed in saline-infused animals. In conclusion, we provide evidence of impaired LV function with concomitant isovolumic contraction and relaxation abnormalities during chronic hypertension while ejection remains preserved and no sign of heart failure is present. The evaluation under unloaded conditions shows intrinsic LV abnormalities.
Asunto(s)
Hipertensión/fisiopatología , Función Ventricular Izquierda , Angiotensina II , Animales , Diástole , Femenino , Hemodinámica , Hipertrofia Ventricular Izquierda/inducido químicamente , Contracción Miocárdica , PorcinosRESUMEN
AIMS: Cardiomyopathy is a lethal result of Duchenne muscular dystrophy (DMD), but its characteristics remain elusive. The golden retriever muscular dystrophy (GRMD) dogs produce DMD pathology and mirror DMD patient's symptoms, including cardiomyopathy. We previously showed that bradykinin slows the development of pacing-induced heart failure. Therefore, the goals of this research were to characterize dystrophin-deficiency cardiomyopathy and to examine cardiac effects of bradykinin in GRMD dogs. METHODS AND RESULTS: At baseline, adult GRMD dogs had reduced fractional shortening (28 ± 2 vs. 38 ± 2% in control dogs, P < 0.001) and left ventricular (LV) subendocardial dysfunction leading to impaired endo-epicardial gradient of radial systolic velocity (1.3 ± 0.1 vs. 3.8 ± 0.2 cm/s in control dogs, P < 0.001) measured by echocardiography. These changes were normalized by bradykinin infusion (1 µg/min, 4 weeks). In isolated permeabilized LV subendocardial cells of GRMD dogs, tension-calcium relationships were shifted downward and force-generating capacity and transmural gradient of myofilament length-dependent activation were impaired compared with control dogs. Concomitantly, phosphorylation of sarcomeric regulatory proteins and levels of endothelial and neuronal nitric oxide synthase (e/nNOS) in LV myocardium were significantly altered in GRMD dogs. All these abnormalities were normalized in bradykinin-treated GRMD dogs. CONCLUSIONS: Cardiomyopathy in GRMD dogs is characterized by profound LV subendocardial dysfunction, abnormal sarcomeric protein phosphorylation, and impaired e/nNOS, which can be normalized by bradykinin treatment. These data provide new insights into the pathophysiological mechanisms accounting for DMD cardiomyopathy and open new therapeutic perspectives.
Asunto(s)
Bradiquinina/farmacología , Distrofia Muscular de Duchenne/fisiopatología , Óxido Nítrico Sintasa de Tipo III/fisiología , Óxido Nítrico Sintasa de Tipo I/fisiología , Proteínas/metabolismo , Sarcómeros/metabolismo , Función Ventricular Izquierda/efectos de los fármacos , Animales , Perros , Contracción Miocárdica/efectos de los fármacos , Óxido Nítrico Sintasa de Tipo I/análisis , Óxido Nítrico Sintasa de Tipo III/análisis , FosforilaciónRESUMEN
Little is known about the vascular function and expression of endothelial and neuronal nitric oxide synthases (eNOS and nNOS) in Duchenne muscular dystrophy (DMD). Bradykinin is involved in the regulation of eNOS expression induced by angiotensin-converting enzyme inhibitors. We characterized the vascular function and eNOS and nNOS expression in a canine model of DMD and evaluated the effects of chronic bradykinin treatment. Vascular function was examined in conscious golden retriever muscular dystrophy (GRMD) dogs with left ventricular dysfunction (measured by echocardiography) and in isolated coronary arteries. eNOS and nNOS proteins in carotid arteries were measured by western blot and cyclic guanosine monophosphate (cGMP) content was analyzed by radioimmunoassay. Compared with controls, GRMD dogs had an impaired vasodilator response to acetylcholine. In isolated coronary artery, acetylcholine-elicited relaxation was nearly absent in placebo-treated GRMD dogs. This was explained by reduced nNOS and eNOS proteins and cGMP content in arterial tissues. Chronic bradykinin infusion (1 µg/min, 4 weeks) restored in vivo and in vitro vascular response to acetylcholine to the level of control dogs. This effect was NO-mediated through upregulation of eNOS and nNOS expression. In conclusion, this study is the first to demonstrate that DMD is associated with NO-mediated vascular endothelial dysfunction linked to an altered expression of eNOS and nNOS, which can be overcome by bradykinin.
Asunto(s)
Bradiquinina/fisiología , Endotelio Vascular/fisiopatología , Distrofia Muscular de Duchenne/fisiopatología , Óxido Nítrico Sintasa de Tipo III/metabolismo , Óxido Nítrico Sintasa de Tipo I/metabolismo , Animales , Presión Sanguínea , Arterias Carótidas/enzimología , GMP Cíclico/metabolismo , Modelos Animales de Enfermedad , Perros , Distrofia Muscular de Duchenne/enzimología , Óxido Nítrico/fisiología , Disfunción Ventricular IzquierdaRESUMEN
AIMS: We investigated whether rapid cooling instituted by total liquid ventilation (TLV) improves cardiac and mitochondrial function in rabbits submitted to ischaemia-reperfusion. METHODS AND RESULTS: Rabbits were chronically instrumented with a coronary artery occluder and myocardial ultrasonic crystals for assessment of segment length-shortening. Two weeks later they were re-anaesthetized and underwent either a normothermic 30-min coronary artery occlusion (CAO) (Control group, n = 7) or a comparable CAO with cooling initiated by a 10-min hypothermic TLV and maintained by a cold blanket placed on the skin. Cooling was initiated after 5 or 15 min of CAO (Hypo-TLV and Hypo-TLV(15') groups, n = 6 and 5, respectively). A last group underwent normothermic TLV during CAO (Normo-TLV group, n = 6). Wall motion was measured in the conscious state over three days of reperfusion before infarct size evaluation and histology. Additional experiments were done for myocardial sampling in anaesthetized rabbits for mitochondrial studies. The Hypo-TLV procedure induced a rapid decrease in myocardial temperature to 32-34 degrees C. Throughout reperfusion, segment length-shortening was significantly increased in Hypo-TLV and Hypo-TLV(15') vs. Control and Normo-TLV (15.1 +/- 3.3%, 16.4 +/- 2.3%, 1.8 +/- 0.6%, and 1.1 +/- 0.8% at 72 h, respectively). Infarct sizes were also considerably attenuated in Hypo-TLV and Hypo-TLV(15') vs. Control and Normo-TLV (4 +/- 1%, 11 +/- 5%, 39 +/- 2%, and 42 +/- 5% infarction of risk zones, respectively). Mitochondrial function in myocardial samples obtained at the end of ischaemia or after 10 min of reperfusion was improved by Hypo-TLV with respect to ADP-stimulated respiration and calcium-induced opening of mitochondrial permeability transition pores (mPTP). Calcium concentration opening mPTP was, e.g., increased at the end of ischaemia in the risk zone in Hypo-TLV vs. Control (157 +/- 12 vs. 86 +/- 12 microM). Histology and electron microscopy also revealed better preservation of lungs and of cardiomyocyte ultrastructure in Hypo-TLV when compared with Control. CONCLUSION: Institution of rapid cooling by TLV during ischaemia reduces infarct size as well as other sequelae of ischaemia, such as post-ischaemic contractile and mitochondrial dysfunction.
Asunto(s)
Hipotermia Inducida , Mitocondrias Cardíacas/patología , Isquemia Miocárdica/terapia , Miocardio/patología , Daño por Reperfusión/prevención & control , Disfunción Ventricular Izquierda/prevención & control , Adenosina Difosfato/metabolismo , Animales , Ropa de Cama y Ropa Blanca , Calcio/metabolismo , Modelos Animales de Enfermedad , Hemodinámica , Hipotermia Inducida/instrumentación , Hipotermia Inducida/métodos , Ventilación Liquida , Masculino , Mitocondrias Cardíacas/metabolismo , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Poro de Transición de la Permeabilidad Mitocondrial , Contracción Miocárdica , Isquemia Miocárdica/complicaciones , Isquemia Miocárdica/patología , Isquemia Miocárdica/fisiopatología , Miocardio/metabolismo , Conejos , Daño por Reperfusión/etiología , Daño por Reperfusión/patología , Daño por Reperfusión/fisiopatología , Factores de Tiempo , Disfunción Ventricular Izquierda/etiología , Disfunción Ventricular Izquierda/patología , Disfunción Ventricular Izquierda/fisiopatologíaRESUMEN
AIMS: Postsystolic wall thickening (PSWT) occurs after aortic valve closure. We investigated the influence of ischemia location and wall interactions on PSWT in normal and stunned myocardium. METHODS AND RESULTS: Twenty-two dogs were studied. Seven chronically instrumented dogs (sonomicrometry) underwent 10-min coronary artery occlusion (CAO) of left circumflex artery ("LCX stunning") and seven other dogs underwent 10-min CAO of the anterior descending artery ("LAD stunning") followed by reperfusion. At baseline, there was no PSWT in the anterior wall whereas posterior wall started and finished to thicken after the anterior wall, demonstrating PSWT. With LCX stunning, PSWT was observed in the posterior wall without affecting the remote anterior wall. With LAD stunning, PSWT in the anterior wall was transient and of lower magnitude Vs. posterior wall; in the remote posterior wall, PSWT previously observed at baseline, almost vanished. Postsystolic to systolic wall thickening ratio identified (ROC analysis) normal, ischemic and stunned myocardium with different amplitudes between walls. Tissue Doppler Imaging demonstrated similar pattern in basal, mid and apical segments (additional n = 4 for both LCX and LAD stunning). CONCLUSION: The present study demonstrates that location of ischemia and wall interactions produce discrepancies in PSWT between anterior and posterior walls in stunned myocardium.
Asunto(s)
Corazón/fisiopatología , Aturdimiento Miocárdico/fisiopatología , Sístole/fisiología , Función Ventricular Izquierda , Animales , Perros , Isquemia Miocárdica/fisiopatologíaRESUMEN
AIMS: Post-systolic wall thickening (PSWT) occurs after aortic valve closure. This waste of thickening does not participate in ejection. PSWT increases with myocardial ischaemia and stunning but the effects of anti-anginal drugs on PSWT during myocardial dysfunction remain unknown. The effects of two heart rate reducing agents, i.e. the beta-blocker atenolol and the selective I(f) current inhibitor ivabradine, were compared on PSWT. METHODS AND RESULTS: Coronary stenosis was calibrated in six conscious instrumented dogs to suppress increase in coronary blood flow during a 10 min treadmill exercise to induce myocardial stunning. After exercise completion, stenosis was relieved and saline, atenolol or ivabradine (both at 1 mg/kg iv) were administered. For similar heart rate reduction, ivabradine attenuated stunning, whereas atenolol further depressed systolic wall thickening. PSWT to total wall thickening ratio was significantly decreased by ivabradine vs. saline, whereas total wall thickening was similar. Thus, ivabradine devoted a greater part of thickening to systole by converting PSWT into ejectional thickening. In contrast, atenolol failed to reduce PSWT vs. saline. Atrial pacing abolished the effects of ivabradine but not those of atenolol. CONCLUSION: Selective heart rate reduction with ivabradine converts PSWT into ejectional thickening but not with atenolol secondary to its negative inotropism.