Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Front Plant Sci ; 12: 698060, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34456939

RESUMEN

Drought poses a major challenge to the production of potatoes worldwide. Climate change is predicted to further aggravate this challenge by intensifying potato crop exposure to increased drought severity and frequency. There is an ongoing effort to adapt our production systems of potatoes through the development of drought-tolerant cultivars that are appropriately engineered for the changing environment. The breeding of drought-tolerant cultivars can be approached through the identification of drought-related physiological and biochemical traits and their deployment in new potato cultivars. Thus, the main objective of this study was to develop a method to identify and characterize the drought-tolerant potato genotypes and the related key traits. To achieve this objective, first we studied 56 potato genotypes including 54 cultivars and 2 advanced breeding lines to assess drought tolerance in terms of tuber yield in the greenhouse experiment. Drought differentially reduced tuber yield in all genotypes. Based on their capacity to maintain percent tuber yield under drought relative to their well-watered controls, potato genotypes differed in their ability to tolerate drought. We then selected six genotypes, Bannock Russet, Nipigon, Onaway, Denali, Fundy, and Russet Norkotah, with distinct yield responses to drought to further examine the physiological and biochemical traits governing drought tolerance. The drought-induced reduction in tuber yield was only 15-20% for Bannock Russet and Nipigon, 44-47% for Onaway and Denali, and 83-91% for Fundy and Russet Norkotah. The tolerant genotypes, Bannock Russet and Nipigon, exhibited about a 2-3-fold increase in instantaneous water-use efficiency (WUE) under drought as compared with their well-watered controls. This stimulation was about 1.8-2-fold for moderately tolerant genotypes, Onaway and Denali, and only 1.5-fold for sensitive genotypes, Fundy, and Russet Norkotah. The differential stimulation of instantaneous WUE of tolerant and moderately tolerant genotypes vs. sensitive genotypes was accounted for by the differential suppression of the rates of photosynthesis, stomatal conductance, and transpiration rates across genotypes. Potato genotypes varied in their response to leaf protein content under drought. We suggest that the rates of photosynthesis, instantaneous WUE, and leaf protein content can be used as the selection criteria for the drought-tolerant potato genotypes.

2.
Genes (Basel) ; 11(8)2020 07 30.
Artículo en Inglés | MEDLINE | ID: mdl-32751417

RESUMEN

Competition for scarce water resources and the continued effects of global warming exacerbate current constraints on potato crop production. While plants' response to drought in above-ground tissues has been well documented, the regulatory cascades and subsequent nutritive changes in developing tubers have been largely unexplored. Using the commercial Canadian cultivar "Vigor", plants were subjected to a gradual drought treatment under high tunnels causing a 4 °C increase in the canopy temperature. Tubers were sampled for RNAseq and metabolite analysis. Approximately 2600 genes and 3898 transcripts were differentially expressed by at least 4-fold in drought-stressed potato tubers, with 75% and 69% being down-regulated, respectively. A further 229 small RNAs were implicated in gene regulation during drought. Expression of several small RNA clusters negatively correlated with expression of their six target patatin genes, suggesting involvement in the regulation of storage proteins during drought. The comparison of protein homologues between Solanum tuberosum L. and Arabidopsis thaliana L. indicated that down-regulated genes were associated with phenylpropanoid and carotenoid biosynthesis. As is indicative of reduced flow through the phenylpropanoid pathway, phenylalanine accumulated in drought-stressed tubers. This suggests that there may be nutritive implications to drought stress occurring during the potato tuber bulking phase in sensitive cultivars.


Asunto(s)
Sequías , Valor Nutritivo , Proteínas de Plantas/metabolismo , Tubérculos de la Planta/fisiología , Solanum tuberosum/fisiología , Estrés Fisiológico , Transcriptoma , Regulación de la Expresión Génica de las Plantas , Fotosíntesis , Proteínas de Plantas/genética , Tubérculos de la Planta/crecimiento & desarrollo , Solanum tuberosum/crecimiento & desarrollo
3.
Plant Physiol Biochem ; 146: 163-176, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-31756603

RESUMEN

Tubers are vegetative reproduction organs formed from underground extensions of the plant stem. Potato tubers are harvested and stored for months. Storage under cold temperatures of 2-4 °C is advantageous for supressing sprouting and diseases. However, development of reducing sugars can occur with cold storage through a process called cold-induced sweetening (CIS). CIS is undesirable as it leads to darkened color with fry processing. The purpose of the current study was to find differences in biological responses in eight cultivars with variation in CIS resistance. Transcriptome sequencing was done on tubers before and after cold storage and three approaches were taken for gene expression analysis: 1. Gene expression correlated with end-point glucose after cold storage, 2. Gene expression correlated with increased glucose after cold storage (after-before), and 3. Differential gene expression before and after cold storage. Cultivars with high CIS resistance (low glucose after cold) were found to increase expression of an invertase inhibitor gene and genes involved in DNA replication and repair after cold storage. The cultivars with low CIS resistance (high glucose after cold) showed increased expression of genes involved in abiotic stress response, gene expression, protein turnover and the mitochondria. There was a small number of genes with similar expression patterns for all cultivars including genes involved in cell wall strengthening and phospholipases. It is proposed that the pattern of gene expression is related to chilling-induced DNA damage repair and cold acclimation and that genetic variation in these processes are related to CIS.


Asunto(s)
Solanum tuberosum , Frío , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Tubérculos de la Planta , beta-Fructofuranosidasa
4.
Front Plant Sci ; 10: 563, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31139199

RESUMEN

Global climate change in the form of extreme heat and drought poses a major challenge to sustainable crop production by negatively affecting plant performance and crop yield. Such negative impact on crop yield is likely to be aggravated in future because continued greenhouse gas emissions will cause further rise in temperature leading to increased evapo-transpiration and drought severity, soil salinity as well as insect and disease threats. This has raised a major challenge for plant scientists on securing global food demand, which urges an immediate need to enhance the current yield of major food crops by two-fold to feed the increasing population. As a fourth major food crop, enhancing potato productivity is important for food security of an increasing population. However, potato plant is highly prone to high temperature, drought, soil salinity, as well as insect and diseases. In order to maintain a sustainable potato production, we must adapt our cultivation practices and develop stress tolerant potato cultivars that are appropriately engineered for changing environment. Yet the lack of data on the underlying mechanisms of potato plant resistance to abiotic and biotic stress and the ability to predict future outcomes constitutes a major knowledge gap. It is a challenge for plant scientists to pinpoint means of improving tuber yield under increasing CO2, high temperature and drought stress including the changing patterns of pest and pathogen infestations. Understanding stress-related physiological, biochemical and molecular processes is crucial to develop screening procedures for selecting crop cultivars that can better adapt to changing growth conditions. Elucidation of such mechanism may offer new insights into the identification of specific characteristics that may be useful in breeding new cultivars aimed at maintaining or even enhancing potato yield under changing climate. This paper discusses the recent progress on the mechanism by which potato plants initially sense the changes in their surrounding CO2, temperature, water status, soil salinity and consequently respond to these changes at the molecular, biochemical and physiological levels. We suggest that future research needs to be concentrated on the identification and characterization of signaling molecules and target genes regulating stress tolerance and crop yield potential.

5.
J Food Sci Technol ; 55(10): 4028-4041, 2018 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-30228401

RESUMEN

This study aimed to determine the effect of combinations of blanching parameters, including blanching temperatures ranging from 65 to 85 °C and duration times ranging from 2 to 10 min, on reducing sugars, asparagine, acrylamide, and color levels of fried potato chips. Response surface methodology was used to develop response surface equations to estimate these effects. These latter were evaluated before and after a 3-month storage period of potato tubers at 10 °C. It was found that certain blanching parameters resulted in optimal maximum reductions of 64.2, 49.8, and 61.3% for reducing sugar, asparagine, and acrylamide, respectively. Analysis of variance (ANOVA) determined that blanching time had a more significant impact than blanching temperature. The blanching time that resulted in maximum reductions of asparagine, reducing sugars-and ultimately acrylamide-were in the range of 8.8-9.7 min at 68.7-75.0 °C. ANOVA also determined that after the 3-month storage period of potato tubers, variations in blanching time and temperature did not result in any significant differences in acrylamide formation in fried chips. Blanching consistently improved the appearance of the fried chip products, indicated by increases in L* value and decreases in a* values. The relationship between acrylamide formation and a* value was linear (R2 = 0.839), while the relationship between acrylamide formation and L* value was not (R2 = 0.375).

6.
Plant Genome ; 11(1)2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29505631

RESUMEN

Kleb. is a pathogenic fungus causing wilting, chlorosis, and early dying in potato ( L.). Genetic mapping of resistance to was done using a diploid population of potato. The major quantitative trait locus (QTL) for resistance was found on chromosome 5. The gene, controlling earliness of maturity and tuberization, was mapped within the interval. Another QTL on chromosome 9 co-localized with the wilt resistance gene marker. Epistasis analysis indicated that the loci on chromosomes 5 and 9 had a highly significant interaction, and that functioned downstream of The alleles were sequenced and found to encode StCDF1.1 and StCDF1.3. Interaction between the resistance allele and the was demonstrated, but not for Genome-wide expression QTL (eQTL) analysis was performed and genes with eQTL at the and loci were both found to have similar functions involving the chloroplast, including photosynthesis, which declines in both maturity and wilt. Among the gene ontology (GO) terms that were specific to genes with eQTL at the , but not the locus, were those associated with fungal defense. These results suggest that controls fungal defense and reduces early dying in wilt through affecting genetic pathway controlling tuberization timing.


Asunto(s)
Resistencia a la Enfermedad/genética , Enfermedades de las Plantas/microbiología , Sitios de Carácter Cuantitativo , Solanum tuberosum/fisiología , Verticillium/patogenicidad , Diploidia , Epistasis Genética , Regulación de la Expresión Génica de las Plantas , Ontología de Genes , Enfermedades de las Plantas/genética , Proteínas de Plantas/genética , Tubérculos de la Planta/fisiología , Solanum tuberosum/genética , Solanum tuberosum/microbiología
7.
Food Chem ; 203: 356-366, 2016 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-26948625

RESUMEN

To identify healthier potatoes with respect to starch profiles, fourteen early varieties were evaluated for their dietary fiber, total starch, rapidly digestible (RDS), slowly digestible (SDS), and resistant (RS) starch for nutrition and with regard to estimated glycemic index (eGI) and glycemic load (eGL). While all these profiles were highly dependent on the potato variety, eleven out of fourteen varieties were classified as low GL foods (p<0.05). A strong positive correlation was observed with eGI and RDS (r=0.975-1.00, 0.96-1.00 and 0.962-0.997 for uncooked, cooked and retrograded varieties, respectively), whereas a strong negative correlation was observed between eGI and RS (r=-0.985 to -0.998, -0.96 to -1.00 and -0.983 to -0.999 for uncooked, cooked and retrograded varieties respectively, p<0.05). For the cultivars examined, the present study identified RDS and RS as major starch factors contributing to eGI.


Asunto(s)
Índice Glucémico , Valor Nutritivo , Solanum tuberosum/química , Almidón/análisis , Glucemia , Culinaria , Fibras de la Dieta/análisis , Digestión , Especificidad de la Especie , Almidón/química , Almidón/metabolismo
8.
J Agric Food Chem ; 64(5): 1176-84, 2016 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-26760673

RESUMEN

Potatoes usually have the tuber bud end dominance in growth during tuber bulking and in tuber sprouting, likely using carbohydrates from the tuber stem end. We hypothesized that the tuber bud end and tuber stem end coordination in carbohydrate metabolism gene expression is different between the bulking dominance and sprouting dominance of the tuber bud end. After comparing the growing tubers at harvest from a green vine and the stage that sprouts just started to emerge after storage of tubers at room temperature, we found the following: (1) Dry matter content was higher in the tuber stem end than the tuber bud end at both stages. (2) The starch granule size was larger in the tuber bud end than in the tuber stem end. (3) The tuber bud end had higher gene expression for starch synthesis but a lower gene expression of sucrose transporters than the tuber stem end during tuber growing. (4) The tuber stem end at the sprouting stage showed more active gene expression in both starch degradation and resynthesis, suggesting more active export of carbohydrates, than the tuber bud end. The results indicate that the starch accumulation mechanism in the tuber bud end was different between field growing and post-harvest sprouting tubers and that tubers already increased dry matter and average starch granule sizes in the tuber bud end prior to the rapid growth of sprouts.


Asunto(s)
Tubérculos de la Planta/química , Solanum tuberosum/metabolismo , Almidón/química , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Tallos de la Planta/química , Tallos de la Planta/genética , Tallos de la Planta/crecimiento & desarrollo , Tallos de la Planta/metabolismo , Tubérculos de la Planta/genética , Tubérculos de la Planta/crecimiento & desarrollo , Tubérculos de la Planta/metabolismo , Solanum tuberosum/química , Solanum tuberosum/genética , Solanum tuberosum/crecimiento & desarrollo , Almidón/metabolismo
9.
J Agric Food Chem ; 61(16): 3941-8, 2013 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-23484744

RESUMEN

Biochemically, starch is composed of amylose and amylopectin but can also be defined by its digestibility rates within the human intestinal tract, i.e., rapidly digested (RDS), slowly digested (SDS), or resistant (RS). The relative ratio of these starch components is the main contributor to differences in the glycemic index (GI) of carbohydrate sources. This study evaluated the digestible starch profile of 12 potato genotypes comprising elite breeding lines and commercial varieties in six environments, with the optimal profile defined as low RDS and high SDS. Genotype by environment interaction (GEI) analysis found significant (p = 0.05) genotypic and environmental effects for all digestibility rate components; however, interaction effects were only significant for SDS. Optimal starch profiles were identified for two genotypes, CV96044-3 and Goldrush. The desirable starch profile in these potato cultivars can be exploited in breeding programs for the improvement of starch profile and other important characteristics such as high yields and disease resistance.


Asunto(s)
Interacción Gen-Ambiente , Solanum tuberosum/química , Solanum tuberosum/metabolismo , Almidón/análisis , Almidón/metabolismo , Cruzamiento , Digestión , Ambiente , Genotipo , Índice Glucémico , Humanos , Solanum tuberosum/genética , Especificidad de la Especie
10.
Food Funct ; 2(8): 438-44, 2011 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-21761065

RESUMEN

The purpose of this study was to investigate whether the effects of cooling and reheating on the glycaemic index (GI) of novel potato clones (selections) differed depending on selection and whether cooling altered starch absorption in vivo. We conducted 3 experiments using 4 novel potato clones in healthy subjects. Experiment 1: the GI of 4 selections each prepared in 3 ways (freshly boiled, cooled, or cooled and reheated) was measured in 2 groups of 10 subjects (each group tested 2 selections). Experiment 2 (n=10): two selections from Experiment 1 were re-tested one year later, by a different subject group. Experiment 3 (n=10): two selections from Experiment 1 were tested by subjects from Experiment 2 to assess the rate and extent of starch absorption using the second-meal effect and the breath hydrogen method, respectively. Experiment 1 demonstrated a selection×treatment interaction for GI (p=0.024); cooling reduced the GI of two selections by 40-50% (p<0.05) but reduced GI of the other 2 by only 8-10% (ns). Experiment 2 confirmed the selection×treatment interaction (p=0.018) seen in Experiment 1. Experiment 3: cooling reduced the GI by an average of 37% (p<0.05) but only increased starch malabsorption in vivo from 3% to 5% (p=0.021); there was no significant second-meal effect. It is concluded that the effect of cooling on the GI of potatoes may vary from 0-50% depending on selection. However, the mechanism for the effect is not clear: the 2% increase in starch malabsorption seen upon cooling potatoes was not nearly enough to account for the 37% reduction in GI.


Asunto(s)
Manipulación de Alimentos/métodos , Índice Glucémico , Solanum tuberosum/química , Absorción , Adulto , Glucemia/análisis , Pruebas Respiratorias , Carbohidratos de la Dieta/farmacocinética , Digestión , Femenino , Calor , Humanos , Masculino , Persona de Mediana Edad , Tubérculos de la Planta/química , Almidón/farmacocinética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA